McKubre

subpage of iccf-21/abstracts/review/

abstract

Slides: ICCF21 Main McKubre

introductory summary by Ruby Carat:

Michael McKubre followed up making a plea that “condensed matter nuclear science is anomalous no more!” He echoes Tom Darden’s sentiment that CMNS must be integrated into the mainstream of science.

“I needed to see it with my own eyes to believe that it was true”, says McKubre. “At the same time, cold fusion is reproduced somewhere on the planet every day. Verification has already happened. But self-censorship is a problem in the CMNS field. Are we guarding our secrets for fear that someone else might take credit? Yes.”

Michael McKubre with The Fleischmann Pons Heat and Ancillary Effects: What Do We Know, and Why? How Might We Proceed? (copy on ColdFusionNow, 74.16 MB)

Local copy on CFC: (1:02:32)

But energy is a primary problem and you must “collaborate, cooperate, and communicate”, McKubre says to the scientists in the room.

That’s been my message for years. . . . the three C’s.

McKubre thanked Jed Rothwell and Jean-Paul Biberian for all the work on lenr.org and the Journal of Condensed Matter Nuclear Science, respectively. Beyond that, the communication in the CMNS field is very poor and needs to be remedied.

He also supports a multi-laboratory approach where reproductions are conducted. Verification of this science has already occurred in the 90s, with the confirmation of tritium, and the heat-helium correlation. He believes that all the many variables must be correlated to move forward. Unfortunately, he believes the same thing he said in 1996, according to a Jed Rothwell article, that “acceptance of this field will only come about when a viable technology is achieved.”

To make progress, a procedure for replication must be codified, and a set of papers should be packaged for newbies to the field. A demonstration cell is third important effort to pursue.

Electrochemical PdD/LiOD is already proven, despite the problem with “electrochemisty”, and has not been demonstrated for >10 years. Energetics Technologies cell 64 a few years back gave 40 kJ input 1.14 MJ output, gain= 27.5 Sadly, the magic materials issue prevented replication.

“1 watt excess power is too small to convince a skeptic, and 100 Watts too hard (at least for electrochemistry)”, said McKubre. The goal is to create the heat effect at the lowest input power possible.

According to McKubre, Verification, Correlation, Replication, Demonstration, Utilization are the five marks of exploring and exploiting the FPHE.

Task for a learner/volunteer: transcribe the talk, key it to the minutes in the audio and to the slide deck.

I’m postponing major review until I have the text. I’ll have a lot to say (as he predicted!).

Print Friendly, PDF & Email

Leave a Reply

Your email address will not be published. Required fields are marked *

WordPress Anti Spam by WP-SpamShield