THE CROSS SECTION FACTOR FOR THE REACTIONS
$^2\text{H}(d,p)^3\text{H} + ^2\text{H}(d,n)^3\text{He}$ AT VERY LOW TEMPERATURE

A. Scalia, P. Figuera

Dipartimento di Fisica dell'Universita' di Catania
Corso Italia 57, 195129 Catania - Italy

1. The shadow model.

A determined value of the fusion cross section $\bar{\sigma}_f$ can be obtained by using the Rutherford differential cross section $\sigma_R(\vartheta)$, in fact for a fixed value of $\bar{\sigma}_f$ there exist a value ϑ_f of ϑ such that:

$$\bar{\sigma}_f = 2\pi \int_0^\pi \sigma_R(\vartheta) \sin(\vartheta) \, d\vartheta$$

Eq. (1) could be considered a merely numerical result, however this is not true if we assume that the subbarrier fusion process is the shadow of the elastic scattering (1), so that the particles which fuse are those which in the Rutherford scattering are detected in the shadow region. In fact, by assuming the "shadow" point of view there exist a value ϑ_f of the scattering angle ϑ such that the particles which fuse are those that in Rutherford scattering are detected in the angular range

$$\vartheta_f \leq \vartheta \leq \pi$$

i.e. the "shadow" region, see fig.1, so that eq. (1) follows from the "shadow" assumption. Now we remind that in Rutherford scattering it is

$$R_f = \eta/k \left(1 + 1/\sin(\vartheta_f/2) \right)$$
where R_f is the distance of closest approach of the Rutherford trajectory with $\theta=\theta_f$. η is the Coulomb parameter and k is the wave number. By using eq.(3), eq.(2) becomes:

$$2\eta/k \leq R \leq R_f$$

so that in the "shadow" approach the particles which fuse are those having a distance of closest approach R that satisfies inequality (4).

![Rutherford trajectories for different values of the impact parameters. The dashed line shows the range of strong interaction.](image)

By using eq.(3), eq.(1) can be rewritten as:

$$\sigma_f = \pi R_f^2 \left(1 - \frac{2\eta}{kR_f} \right)$$

where R_f must be determined. From eq.(5) it follows that

$$\frac{R_f}{2\eta/k} = \frac{1}{2} \left(1 + \frac{\sigma_f k^2}{\pi \eta^2} \right)^{1/2}$$

236
and by putting in eq. (6) $\sigma_{f} = \sigma_{f}^{ex}$, σ_{f}^{ex} being the experimental fusion cross section, we have:

$$\frac{R_{f}^{ex}}{2\pi/k} - 1 = -1/2 + 1/2 \left(1 + \frac{\sigma_{f}^{ex} k^2}{\pi^2} \right)$$

Now we consider the function $y_{f}^{ex}(E)$ defined as follows:

$$y_{f}^{ex}(E) = \ln \left\{ \ln \left[-\ln \left(\frac{R_{f}^{ex}}{2\pi/k} - 1 \right) \right] \right\}$$

and we remember that the energy of the Coulomb Barrier V_{B} can be obtained approximately by using the following expression:

$$V_{B} = \frac{Z_{1} Z_{2} e^2}{1.07(A_{1}^{1/3} + A_{2}^{1/3}) + 2.72} \text{ MeV}$$

so that if we report $y_{f}^{ex}(E)$ versus $(V_{B} - E)$ we obtain that $y_{f}^{ex}(E)$ is a linear function of $E^{(1,3)}$. In tables 1, 2 some systems investigated in refs. 1 and 3 respectively, are reported. From the above arguments it follows that R_{f} can be rewritten as

$$R_{f} = 2\pi/k \left\{ 1 + \exp \left[-\exp \left(\exp(y) \right) \right] \right\}$$

where

$$y = (E_{B} - E)/E_{S}$$

and E_{B} and E_{S} are two parameters, expressed in MeV, to be determined. By using eq. (10), eq. (5) can be rewritten:

$$\sigma_{f} = \pi(2\pi/k)^2 \left[1 + G(y) \right] G(y)$$

where

$$G(y) = \exp \left[-\exp \left(\exp(y) \right) \right]$$

and the parameters E_{B} and E_{S} can be determined by comparing the experimental values of fusion cross section with those obtained by using eqs. (11-13).
Now we remind that eqs.(11-13) are not able to reproduce the experimental values of fusion cross section for light systems at very low energy\(^{(4,5)}\) so that we suggested\(^{(4,5)}\) to modify eq.(12) as follows:

\[
\sigma_f = \sigma_f \left[1 - g(y) \right] \left[1 - g_1(y) \right]
\]

where

\[
g(y) = \exp \left[- \left(\frac{d - y}{d - y_m} \right)^{Y_1} \right] 2.789
\]

\[
g_1(y) = \exp \left[- \left(\frac{d - y}{d - y_1} \right)^{Y_2} \right] 2.789
\]

\[d = \frac{E_b}{E_s}, \quad y_m = \left(\frac{E_b - E_m}{E_s} \right), \quad y_1 = \left(\frac{E_b - E_1}{E_s} \right)
\]

The values of \(E_b, E_s, E_m, E_1, Y_1, Y_2\) can be determined by fitting the experimental data. The values of \(E_b, E_s, E_m, E_1, Y_1, Y_2\) for the reactions \(^2\text{H} (d,p) ^3\text{H} + ^2\text{H} (d,n) ^3\text{He}\) are reported in table 4.

<table>
<thead>
<tr>
<th>\hspace{1cm} System \hspace{1cm}</th>
<th>(^2\text{H} + ^2\text{H})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_b) (MeV) \hspace{1cm} (E_s) (MeV) \hspace{1cm} (E_m) (MeV) \hspace{1cm} (E_1) (MeV) \hspace{1cm} (Y_1) \hspace{1cm} (Y_2)</td>
<td></td>
</tr>
<tr>
<td>0.18919 \hspace{1cm} 0.21250 \hspace{1cm} 0.00944 \hspace{1cm} 0.03660 \hspace{1cm} 4.48091 \hspace{1cm} 3.64950</td>
<td></td>
</tr>
</tbody>
</table>

A comparison between the experimental values of fusion cross section\(^{(7)}\) and those obtained by using eqs.(11),(14),(15) for the above reactions is shown in fig.2.

2. The cross section factor\(^{(4-6)}\).

The reaction rate \(r_{12}\) in a thermal equilibrium distribution is given by weighting the cross section by the Maxwell-Boltzmann velocity distribution

\[
r_{12} = n_1 n_2 \langle \sigma v \rangle / \langle 1 + \delta_{12} \rangle
\]
with

\[(17) \quad \langle \sigma v \rangle = \int_0^{\infty} \left[\frac{8\pi M_{12}(KT)^3}{M_{12}} \right]^{1/2} \sigma(E) \exp(-E/KT) E \, dE \]

where \(M_{12} \) is the reduced mass of particles 1 and 2, \(n_1 \) and \(n_2 \) are the number densities of particles 1 and 2, \(v \) is the relative velocity, \(E \) is the center of mass energy, \(K \) is the Boltzmann constant, and \(T \) is the temperature.

Fig.2 Comparison between the experimental values of fusion cross section [6] and those obtained by using eqs. (14) and (15)

For non resonant reactions the cross section \(\sigma(E) \) is written usually [6]

\[\sigma(E) = S(E)/E \exp(-2\eta) \]
with

$$2\pi\eta = 2\pi \frac{Z_1 Z_2 e^2}{\mathcal{R} v} = (E_G/E)^{1/2}$$

where E_G is the Gamow energy, η is the Coulomb parameter, Z_1 and Z_2 are the nuclear charges of the two particles, $S(E)$ is the nuclear astrophysical factor. By assuming for the cross section $\sigma(E)$ the expression obtained in the framework of the "shadow" model, see eqs. (11), (14), (15), the cross section factor $<\sigma v>$ can be rewritten

$$<\sigma v> = \left(\frac{8\pi}{M_12 (KT)^3} \right)^{1/2} \sigma_f(E) \exp(-E/KT) E dE = \int_{-\infty}^{d} M(T) I_3^T(y) dy$$

with

$$M(T) = \frac{(8\pi)^{1/2} (Z_1 Z_2 e^2)^2}{M_{12}^{1/2} (KT)^{3/2}}$$

and

$$I_3^T(y) = \left[1/(d-y) \right] G(y) \left[1 + G(y) \right] \exp \left[- \frac{E_E - y E_S}{KT} \right] \left[1 - g(y) \right] \left[1 - g_1(y) \right]$$

so that by using a numerical integration code we can obtain the values of $<\sigma v>$ at different temperatures.

A comparison between the values of $N_a <\sigma v>$ obtained by using our approach and those reported in the literature is shown in table 2. N_a is the Avogadro's number.
<table>
<thead>
<tr>
<th>T(K)</th>
<th>N<sub>a</sub><sup>(a)</sup> (cm<sup>3</sup> s<sup>-1</sup> mol<sup>-1</sup>)</th>
<th>N<sub>a</sub><sup>(b)</sup> (cm<sup>3</sup> s<sup>-1</sup> mol<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.500 10<sup>9</sup></td>
<td>1.061 10<sup>7</sup></td>
<td>1.043 10<sup>7</sup></td>
</tr>
<tr>
<td>0.300 10<sup>9</sup></td>
<td>0.455 10<sup>7</sup></td>
<td>0.473 10<sup>7</sup></td>
</tr>
<tr>
<td>0.150 10<sup>9</sup></td>
<td>0.118 10<sup>7</sup></td>
<td>0.125 10<sup>7</sup></td>
</tr>
<tr>
<td>0.100 10<sup>9</sup></td>
<td>0.461 10<sup>6</sup></td>
<td>0.485 10<sup>6</sup></td>
</tr>
<tr>
<td>0.500 10<sup>8</sup></td>
<td>0.611 10<sup>5</sup></td>
<td>0.660 10<sup>5</sup></td>
</tr>
<tr>
<td>0.250 10<sup>8</sup></td>
<td>0.477 10<sup>4</sup></td>
<td>0.496 10<sup>4</sup></td>
</tr>
<tr>
<td>0.150 10<sup>8</sup></td>
<td>0.473 10<sup>3</sup></td>
<td>0.456 10<sup>3</sup></td>
</tr>
<tr>
<td>0.500 10<sup>7</sup></td>
<td>0.525 10<sup>2</sup></td>
<td>0.443 10<sup>2</sup></td>
</tr>
<tr>
<td>0.300 10<sup>6</sup></td>
<td>0.283 10<sup>-15</sup></td>
<td></td>
</tr>
<tr>
<td>0.300 10<sup>5</sup></td>
<td>0.646 10<sup>-21</sup></td>
<td></td>
</tr>
<tr>
<td>0.300 10<sup>4</sup></td>
<td>0.151 10<sup>-28</sup></td>
<td></td>
</tr>
<tr>
<td>0.300 10<sup>3</sup></td>
<td>0.353 10<sup>-31</sup></td>
<td></td>
</tr>
</tbody>
</table>

a) present work results

b) ref. (9) data

Acknowledgements

Thanks are due to Prof. R. Giordano for stimulating discussions.

References

1) A. Scalia, "The subbarrier fusion as the shadow of the elastic scattering","The "shadow" model for the subbarrier fusion" to be published in Il Nuovo Cimento A

2) A. Scalia, P. Figuera, "The "shadow" model for the subbarrier fusion applied to light system: determination of the reaction rate" submitted to Il Nuovo Cimento.

The authors assume that the fusion cross section is the shadow of the elastic scattering cross section. This assumption is plausible when energy is not small. At $E=0$ the assumption becomes implausible, for the Rutherford formula cannot disagree with the Gamow barrier factor, which emerges from the solution of the problem of the quantum electro-static interaction between charged particles.