BEC 1: Overview

Subpage of Steven Byrnes

Yeong E. Kim at Purdue and colleagues have proposed that, in cold-fusion experiments, the deuterons condense into a Bose-Einstein Condensate (BEC). In this state, he says, they can fuse, and then the energy is collectively absorbed by the BEC. (If you’re not familiar with BEC’s, here is a very simple introduction for non-physicists, [dead link] and I’ll explain more as we go.) According to him, this theory meets all the theoretical challenges of explaining cold fusion.

The “according to him” statement is not referenced, the link is to Byrne’s own list. Is Byrne being accurate here? If Kim actually wrote that, I would chalk it up to a certain level of hyperbole, because the theory simply does not do that, unless the list of challenges is very limited. There are two challenges listed by Byrne: the Coulomb barrier, and the branching ratio, and the second one assumes d-d fusion, and Kim is not actually considering d-d fusion, but multibody fusion.

Kim popped up on my radar when I was first studying LENR, as a co-author of an early paper examining cold fusion theories: Chechin, V.A., et al., “Critical review of theoretical models for anomalous effects in deuterated metals.” Int. J. Theo. Phys., 1994. 33: p. 617. convenience copy:

From that paper, the conclusions would seem apposite to quote here. Remember, this was almost 25 years ago, but there has been no major change on the theory front. Some individual theories have been abandoned, and some theoreticians have developed their ideas in more detail. At the time this was written, helium was not widely recognized as the main nuclear product, and that affects how they view the theories. Among other things, the helium evidence strongly indicates that the reaction does not occur in the bulk, but on or very near the surface.


We conclude that in spite of considerable efforts, no theoretical formulation of CF has succeeded in quantitatively or even qualitatively describing the reported experimental results. Those models claiming to have solved this enigma appear far from having accomplished this goal. Perhaps part of the problem is that not all of the experiments are equally valid, and we do not always know which is which. We think that as the experiments become more reliable with better equipment etc., it will be possible to establish the phenomena, narrow down the contending theories, and zero in on a proper theoretical framework; or to dismiss CF. There is still a great deal of uncertainty regarding the properties and nature of CF.

Of course, the hallmark of good theory is consistency with experiment. However, at present because of the great uncertainty in the experimental results, we have been limited largely in investigating the consistency of the theories with the fundamental laws of nature and their internal self-consistency. A number of the theories do not even meet these basic criteria. Some of the models are based on such exotic assumptions that they are almost untestable, even though they may be self-consistent and not violate the known laws of physics. It is imperative that a theory be testable, if it is to be considered a physical theory.

The simplest and most natural subset of the theories are the acceleration models. They do explain a number of features of the anomalous effects in the deuterated systems. However these models seem incapable of explaining the excess energy release which appears to be uncorrelated with the emission of nuclear products; and incapable of explaining why the branching ratio t/n >>1. If these features continue to be confirmed by further experiments, we shall have to reject the acceleration mechanism also.

It is an understatement to say that the theoretical situation is turbid. We conclude that the mechanism for anomalous effects in deuterated metals is still unknown. At present there is no single consistent theory that predicts or even explains CF and its specific features from first principles.

To learn about the theory, the best place to start is Kim’s publications page, which lists all his papers on the topic, with links to the full text. There is also a newenergytimes portal page, but it is not terribly useful.

That Kim page only lists “selected publications,” 34 out of “over 200,” and clearly not all of his work on LENR, since it does not list Chechin et al (1994). As to the NET page, it’s sketchy. It denies that Kim theory addresses Huizenga’s three miracles, with three words: No, No, and No. That’s Krivit “journalism.”

In the opposition-to-BEC-theory camp, my google search did not turn up too many resources. I found this one-paragraph argument against the theory by Ron Maimon, and this wikiversity message board discussion [link has been fixed] (especially the first paragraph), and this rationalwiki message board (there are a few insightful criticisms scattered around this long page). The criticisms echo each other, and I agree with them too. Really, all I’m planning to do is explain these arguments in more detail, so that a broader audience can follow along.

Great. Pseudoskeptics, faced with BEC theory, come up with some standard knee-jerk objections. Byrnes actually skewers one of them in another post, and here he “agrees with” some bloopers. Some objections are at least possible, and no theory is complete, so this or that defect can readily be pointed out. If it were not for the experimental evidence for nuclear activity in “cold fusion” experiments, we would not be arguing about whether it is possible or not, or about the explanation of an impossible thing. Of the first two conversations, Ron Maimon also wrote on Wikiversity, I think the “anonymous editor” was him, and those discussions were with me, and also the so-called RationalWiki discussion was also between me and a young snot, overproud of his knowledge, which was high for being maybe 16. That discussion was a relatively calm one, RationalWiki was wild back then. It still is, by ordinary standards, but is tame by comparison with what it used to be. Ron Maimon is quite intelligent, but citing RationalWiki is pulling unmentionable substances out of a very dirty pool.

Instead of pulling up the arguments then, I will assume that anything worth discussion will be mentioned again by Byrnes.

The arguments against Kim’s theory fit into two categories:

  • At room temperature, the deuterons cannot condense into a BEC
  • Even if the deuterons did condense into a BEC, they would not undergo nuclear fusion, for the same reason as usual: Because the Coulomb barrier prevents them from getting close enough.

If these are true—and I believe they are, as I’ll explain in future blog posts—then the theory really seems to have no value whatsoever!

Now, this could be an accident of language, but Byrnes just made himself a believer in his own analysis. Reality does not care what he believes.  Let’s look at these two points:

  1. Temperature. Temperature is a bulk measure, an average kinetic energy of atoms. The requirement for a BEC is not low temperature, but low relative momentum. A bulk BEC may require a low temperature, and Kim seems to be proposing a bulk phenomenon, whereas Takahashi proposes a very small BEC, starting generally with two molecules, i.e., four deuterons. BEC formation cannot be ruled out so simply.
  2. Byrnes has here made a statement that is rooted in avoiding quantitative analysis. There is always a fusion rate, because of tunneling. Ordinarily, the rate is so low that it is truly undetectable, but a BEC is a “condensate,” and atoms are closer together in such, than in an ordinary state. Takahashi actually calculates the process of collapse and the distance at closest approach, and the corresponding fusion rate. I am not qualified to assess his math, but other things being equal, I prefer the studied math of a highly experienced nuclear physicist to the knee-jerk opinion of a young PhD. I suggest a little more caution.

Oh, and if that’s not enough, I might suggest a third category of arguments against the theory:

Even if the deuterons did fuse while in a BEC, it would not be magical and special, it would just be a normal 2-body fusion process, creating neutrons, tritium etc. in quantities which would be easily detected in experiments because everyone in the room would die of radiation poisoning.
Hopefully I’ll get a chance to make this argument as well.

This makes a gigantic assumption. It’s been a while since I looked at Kim theory, but Takahashi is not proposing D-D fusion, but 4D fusion to 8Be, which would indeed end up with two helium nuclei.

Obviously, in his dozens of papers, Kim presents specific arguments against #1, #2, and #3. I hope to explain those arguments and why they are not convincing. This is a time-consuming task because the arguments can be pretty nonsensical! It will probably take me a few blog posts. But the good news is, we will get to learn some cool physics on the way!! 😀

Has Byrnes read the arguments yet? If not, his confidence is discouraging. We do not, in fact, know from observation what fusion in a BEC would do. And, remember, the real mechanism of cold fusion, if explained outside of a context of clear evidence that it exists, may well look nonsensical. My sense is that the established laws of physics will not be overturned, but some very unusual conditions will be found to be responsible. But I cannot know this until we know the mechanism (or, alternatively, the artifacts behind the appearance of cold fusion). Contrary to very common opinion, there are reproducible cold fusion experiments that have been widely confirmed. They just aren’t what people thought they wanted, they are not the kind of reproducibility that was being sought.

I’d still like to know where Kim claims that his proposal “meets all the theoretical challenges of cold fusion.” I’m certainly not satisfied by it.

Print Friendly, PDF & Email

Leave a Reply

Your email address will not be published. Required fields are marked *

WordPress Anti Spam by WP-SpamShield