Controlled transmutation of Na, P and Mn to Fe isotopes in D$_2$O and H$_2$O during growth of yeast Saccharomyces cerevisiae

1Vladimir I. Vysotskii, 2Alla A. Kornilova, 3Sergey N. Gaydamaka, 2Marina A. Gladchenko
1Kiev National Shevchenko University, Ukraine
2Moscow State University, Russia
Email: vivysotskii@gmail.com

Over the last 10-15 years we have optimized the method for the realization of nuclear reactions for transmutation of stable and radioactive isotopes in growing syntrophic microbiological associations [1-4]. The most significant achievement was the creation and optimization of technique for transmutation of radioactive Cs137 nuclei into a stable Ba138, which makes it possible to reduce the number of active nuclei by two times in two weeks (acceleration by 500-1000 times as compared with the natural spontaneous decay). On the other hand, we would like to reanimate (revive on the base of a new level of understanding both the processes and mechanisms) our previous investigation of efficient isotope transmutation in pure microbiological cultures (such as Escherichia coli, yeast and others) which we have conducted about 20 years ago [5-7]. According to our “old” date the total efficiency of transmutation for such cultures was 20...30 times less than in syntrophic associations [1-4]. Our new investigations will allow a more detailed study of both the process of isotope transmutation and understand about some abnormal processes in food and medical technologies.

Lately we have conducted several series of such experiments using food yeast. In these experiments we again observed a significant change in the concentration of different elements and isotopes. For example, in a medium based on light water H$_2$O and in the presence of salts of certain chemical elements (Na, N, C, Ca, P, Mn) we recorded a decrease in total mass of manganese (ΔM$_{\text{Mn}}=1.47$ µg) and a simultaneous increase in the mass of iron (ΔM$_{\text{Fe}}=1.31$ µg) in small volume bottles (50 ml). These effects are connected with LENR reaction Mn55+p=Fe56.

In a similar light water medium (but without of Mn salt) we have observed significant change in the isotopic composition (isotopic ratio) of impurity iron - instead of the standard (natural) ratios of isotopes (Fe54/Fe56/Fe$^{57}=5.85%/91.75%/2.11%$), we have registered other ratios (Fe54/Fe56/Fe$^{55}=10.0%/87.7%/2.1%$). These changes are the direct results of creation of Fe54 isotope in N$_2$+3P3=Fe54 reaction that takes place at deficit of iron in nutrient media.

We also have received and investigated a lot of another transmutation reactions in these test experiments - e.g. creation of Fe57 in reaction Mn55+d=Fe57 of transmutation in heavy water media.

Full results will be presented after the completion of the research cycle which we conduct together with scientists from Sweden and Norway.