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Abstract

In this paper, we propose a new classical model in which energy fluctuation diverges. In detail, for certain parameter ranges, kinetic
energy diverges since the momentum obeys the Cauchy distribution. This phenomenon will be applied to the cold fusion since
jumping over the potential wall is essential to cold fusion.
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1. Introduction

It is well known that the second moment of a probability variable x diverges such that

⟨
x2

⟩
=

∫
x2p(x) dx = ∞,

when x obeys a power-law density function defined as

p (x) = O

(
1

x1+α

)
, x ≪ 1, 0 < α < 2.

Then, the fluctuation of the probability variable
⟨
(x− ⟨x⟩)2

⟩
also diverges. When momentum obeys a power-law

density function, the fluctuation of kinetic energy diverges. Then energy fluctuation divergence will play an important
role in jumping over a potential wall. One can read research about the divergence of fluctuation or large fluctuation
of energy [1,2]. In this paper, we propose a classical chaotic model in which power-law density appears for certain
parameter ranges and energy fluctuation can be observed.
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2. Classical Chaotic Model

We consider a classical dynamical system in which a power-law distribution can be observed owing to the chaotic
structure. In general, chaos is characterized by initial condition sensitivity. That is, the distance between two orbits
grows exponentially although the initial points of two orbits are very close. To realize a system in which power-law
densities appear, we apply the fact that when a probability variable α obeys the uniform distribution on

(
− 1

2 ,
1
2

)
,

another probability variable β defined as β = γ tan (πα) , γ > 0 obeys the Cauchy distribution fγ (β) defined as

fγ (β) =
1

π

γ

β2 + γ2
.

Then, from a simple calculation, the variance of β,
⟨
β2

⟩
diverges. Then if momentum p obeys the Cauchy distri-

bution, then the expectation value of kinetic energy
⟨

p2

2

⟩
and its fluctuation⟨(

p2

2
−
⟨
p2

2

⟩)2
⟩

diverge. From this, we propose a four dimensional classical Hamiltonian in order to realize the power-law distribution
defined by

H (p1, q1, p2, q2) =
1
2

(
p21 + p22

)
− ε log |cos {π (q1 − q2)}| ,

V (q1, q2) = −ε log |cos {π (q1 − q2)}| ,
(1)

where ε is a perturbation parameter and

p1,p2 ∈ R, q1,q2 ∈ IδN , IδN =

(
−1

2
+

δN
π

,
1

2
− δN

π

)
.

δN satisfies the condition such that

2
(
1− 2δN

π

)
− 2ε (∆τ)

[
tan

(
π
2 − δN

)
− tan

(
−π

2 + δN
)]

1− 2δN
π

= N,

where N is a natural number. Figures 1 and 2 show the shape of potential V (q1, q2) for ε = 2 and ε = −2, respec-
tively. Although, the potential V (q1, q2) is artificially constructed in order to generate the power-law distribution, this
potential is periodic and in condensed matter physics periodic potentials are often treated [3,4].

From this Hamiltonian, one obtains the canonical equation such that

ṗ1 = − ∂H
∂q1

= πε tan [π {q1 − q2}] , q̇1 = ∂H
∂p1

= p1,

ṗ2 = − ∂H
∂q2

= −πε tan [π {q1 − q2}] , q̇2 = ∂H
∂p2

= p2.
(2)

By using first order symplectic integrator [5] defined as

pi (n+ 1) = pi (n)− ∂H
∂qi

(p1 (n) , q1 (n+ 1) , p2 (n) , q2 (n+ 1)) , i = 1, 2,

qi (n+ 1) = qi (n) +
∂H
∂pi

(p1 (n) , q1 (n) , p2 (n) , q2 (n)) , i = 1, 2,
(3)

one obtains four dimensional time discrete model Tε as follows.
p1(n+ 1)
q1(n+ 1)
p2(n+ 1)
q2(n+ 1)

 = Tε


p1(n)
q1(n)
p2(n)
q2(n)

 =


p1(n)− ε tan [π {q1(n+ 1)− q2(n+ 1)}]
p1(n) + q1(n) mod IδN
p2(n) + ε tan [π {q1(n+ 1)− q2(n+ 1)}]
p2(n) + q2(n) mod IδN

 , (4)
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Figure 1. The shape of potential V (q1, q2) for ε = 2. V (q1, q2) diverges where cos {π (q1 − q2)} = 0.

where the operation mod IδN is defined such that

x mod IδN = x− n
(
1− 2δN

π

)
,

− 1
2 + δN

π + n
(
1− 2δN

π

)
< x ≤ 1

2 − δN
π + n

(
1− 2δN

π

)
, n ∈ Z.

(5)

This map preserves the sum of moment such as p1 (n) + p2 (n) = · · · = p1 (0) + p2 (0). Then, the probabilistic
property for p2 is the same as that of p1. One obtains chaotic orbits for almost all initial points for ε < 0, 2

π < ε.
According to [6], one can prove that { q1 (n)− q2 (n) } obeys the uniform distribution on IδN and have mixing

property owing to the chaotic structure when the parameter satisfies the condition ε < 0, 2
π < ε. When we set N as

Figure 2. The shape of potential V (q1, q2) for ε = −2. V (q1, q2) diverges where cos {π (q1 − q2)} = 0.
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N ≫ 1, variable { q1 (n)− q2 (n) } are considered to distribute uniformly on
(
− 1

2 ,
1
2

)
. Then the Cauchy distribution

appears. That is, the time series {xn = −ε tan [π {q1 (n)− q2 (n)}]} obey the Cauchy distribution f (x) denoted as

f (x) =
1

π

|ε|
x2 + |ε|2

, (6)

when the parameter satisfies the condition ε < 0, 2
π < ε. The momentum p1 and p2 are denoted by sum of variables

{xn}n≥0 such that

p1 (n) = p1 (0) +

n−1∑
i=1

xi, p2 (n) = p2 (0)−
n−1∑
i=1

xi. (7)

In this system, time series {xn}n≥0 have mixing property when the parameter satisfies the condition ε < 0, 2
π < ε.

Then, according to [7], momentum p1 and p2 obey the stable distribution in the condition. If each element of {xn}n≥0

are independent of the other elements, then p1 and p2 obey certain Cauchy distribution f̄ (x) and the expectation value
of kinetic energy ⟨K1⟩ and ⟨K2⟩ defined as

⟨K1⟩ =
⟨
p21
2

⟩
=

∫ ∞

−∞

p21
2
f̄ (x) dx, ⟨K2⟩ =

⟨
p22
2

⟩
=

∫ ∞

−∞

p22
2
f̄ (x) dx, (8)

diverges even though an initial condition of the kinetic energy K1 (0) and K2 (0) are finite.
We investigate whether {p1 (n)} obey the Cauchy distribution at a finite time n. Figure 3 shows the result of

numerical simulation for a distribution with {p1 (100)} for ε = 1 where the number of ensemble M is as M = 106.
When the momentum {p1 (100)} obey the Cauchy distribution whose scale parameter is γ, a new probabilistic

variable {y} defined as

y ≡ p1 (100)− µ√
σ2

obey g(y) such that

g(y) =
1

π

γ
√
σ2(√

σ2y
)2

+ γ2

, (9)

where for finite number of ensemble of {p1 (100)}, µ and σ2 correspond to their average and variance, respectively.
Figure 3 shows the density function with {y} and g(y) where g(y) is fitted by least squares method.

Then from the fitted density function g(y), one obtains the estimated scale parameter γ̂ such as γ̂ = 98.1 ≈
1.00 × 100. If the time series {xn}99n≥0 are independent, the estimated scale parameter γ̂ satisfies the relation as
γ̂ = 100. Then the result as γ̂ = 98.1 ≈ 1.00 × 100 means that the times series {xn} are almost independent.
Therefore, this result suggests that not only {xn} but also {p1,2 (n)} obey the Cauchy distribution.

3. Time Evolution of Energy

In Section 2, we introduced the property of this chaotic model, in which it was proven that the expectation value of
kinetic energy diverges in the conditions described. In this section we show the time evolution of total energy in this
system defined as follows.

E (t) =
p21 (t)

2
+

p22 (t)

2
− ε log |cos {π (q1 (t)− q2 (t))}| . (10)
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Figure 3. The density function of y composed of p1 (100) for ε = 1. A solid line shows the result of the numerical simulation and a broken line
shows a density function g(y) fitted by least squares method. The value of average and variance for finite number of data are about µ ≈ −7.13×105

and
√
σ2 ≈ 7.01× 105 points M is M = 106. Estimated parameter value is γ̂ = 98.1 ≈ 1.00× 100.

According to [8], by discretization, a system does not conserve energy although the Hamiltonian (1) is an autonomous
system. According to [9], the energy fluctuates focusing on the initial value. From Fig. 4, the energy is not so large
until n ≈ 2 × 102 and the intermittent burst occurs around n ≈ 3 × 102. Thereafter the energy begins to fluctuate
wildly.

4. Conclusion

In this paper, a classical chaotic model has been proposed. It has been proven that this model has mixing property
and momentum {p1, p2} obey the stable distribution for ε < 0, 2

π < ε [1]. By numerical simulation, one can see

Figure 4. The time behavior of the total energy for ε = 1. Although the initial total energy is about 12.1, it fluctuates wildly and one can observe
intermittency. Initial condition is (p1, q1, p2, q2) = (0.3, 0, 4.91, 0).
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{p1, p2} obey the Cauchy distribution. From this result, we have confirmed that the variance of {p1, p2} diverges and
the expectation value of the kinetic energy ⟨K1⟩ and ⟨K2⟩ also diverges. Thus, this model can simply explain the
phenomena in which the energy fluctuation divergence occurs although the initial energy is finite. This model can
simply explain the phenomenon in which jumping over the potential wall occurs and can be a toy model which can
explain cold fusion.
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