Abd in the San Francisco Bay Area this week, for two weeks

I’m visiting my children and grandchildren for Thanksgiving, flying to San Francisco, November 14, scheduled to return to Massachusetts November 28. I will be meeting with researchers, as well. There’s a lot going on, a major shift in understanding developed around ICCF-21. It’s actually old stuff, but somehow remained obscure.

A new lab is starting up, run by a familiar face, but I’m not giving details until I have permission.

If you will be in the Bay Area, and would like to meet, contact me.

Meanwhile, I’ve prepared several transcripts from the ICCF-21 videos. Michael Staker’s presentation was a bombshell. It’s not the Fleischmann-Pons Heat Effect replication he did — though interesting, that has been done so, so many times — it is the metallurgy, the understanding of super-abundant vacancies, and, yes, that’s a thing: SAV.

This is not your grandfather’s metal hydride. We’ve gone beyond A and B and even C (gamma phase). This is getting interesting.

Staker’s video transcript, with abstract, slides, and time-links to the video.

Other video transcripts done:
Darden
McKubre
Tanzella
Storms

Lines to ICCF-21 videos, plus abstracts and slides, are linked from ICCF-21/videos.

My ideal is better than your reality

Much criticism is based on this comparison between real-world expression and the critic’s ideas, which, of course, may be revised, ad hoc.

This extends far outside science. Our ideas of perfect morality may be, for example, compared with the real behavior of (some) formal members of a religion, as if this demonstrates the superiority of our religion (or our ideals) over the other.

Because there was only one major and relatively deep critique of the Fleischmann-Pons calorimetry, published in a mainstream journal, one debate where there was original publication, critique (by D.R.O. Morrison), and author response, last year I began a page hierarchy to study the debate. The original as-published documents are behind a pay-wall, so I used copies from lenr-canr.org, that were based on a copy of the Morrison critique from sci.physics.fusion, an internet newsgroup, an obsolete form similar to a mailing list.

I first observed the issue of paper integrity in that the FP paper was not identical to the lenr-canr.org copy, which is likely a copy supplied to that library by an author. That is routine for lenr-canr copies of journal-published papers, for copyright reasons. The changes seemed quite minor (I will check this again more thoroughly). But for no decent reason, I did not check the Morrison critique against the later as-published version, and because that as-published version is not widely available, I preferred to use a version that anyone could check against my copy.

And that was an error. I was then distracted by other business, and as continued participation in the review did not appear, I did not return to my study of the debate until yesterday. I started by completing the adding of URLs for references, and then began going over the Morrison paper. It was full of errors or non sequiturs, immature argument, etc. And I started to wonder how this had gotten past peer review. Journals do not necessarily review critiques as strongly as original papers, and I have seen blatant errors in such critiques. Ordinarily, it is left to the authors to correct such errors. In one case where a blatant error was left standing (the Shanahan review in the Journal of Environmental Monitoring), the error was so ridiculously bad that the authors and others responding completely missed it, instead focusing on Shanahan’s conclusion from his seriously defective analysis. Argument from conclusion, naughty, naughty!)

The Morrison document from the newsgroup had this at the top:
5th DRAFT – Scientific Comments Welcomed.

There were no serious responses to that post, threaded with it. (There were other responses that can be found with some searching, made more complicated by some very poor Google archiving practices, what they did when they took over the newsgroups. I will cover other responses (some of it is interesting) elsewhere.

What Morrison was doing was, in part, to be commended, he was putting his work out there for critique before final submission. However, by this time, the scientific community had become highly polarized, and serious discussion, what might be called collaborative critique, good scientific process, was often missing. It still is, too often. Morrison’s critique would be useful, even if “wrong” in this way or that, because what Morrison wrote would be what many would think, but not necessarily write.

I came back to this issue because I noticed a mention of my study on lenr-forum.com. The remainder of this post is a detailed response to that. Continue reading “My ideal is better than your reality”

Right and wrong at the same time

may be subject to copyright

The cold fusion horizon

Is cold fusion truly impossible, or is it just that no respectable scientist can risk their reputation working on it? — Huw Price

I’ve been reading about Synthestech, blogged about it, and now Deneum, more of the SOS, but a step up in professional hype.

Steve Krivit was right about Rossi, he was — and remains — , ah, how shall I express it? The technical phrase is “liar, liar, pants on fire.” But Krivit’s evidence was weak on the subject, mostly raising obvious suspicions, and Tom Darden and  his friends knew that they needed much better evidence, which they proceeded to obtain.

They found quite enough to conclude that if Rossi had anything, it was so certainly useless and so buried in piles of deceptions and misleading information that they simply walked away, it wasn’t worth the cost of completing the trial in Rossi v. Darden in order to keep the rights, which they could rather easily have done.

Krivit was “right,” certainly in a way, but his claims were obvious, in fact. He was right to report what he found, but it was misleading, and useless, to label everything with approbation and contempt, the habits of yellow journalism.

It is not clear that Industrial Heat could have avoided the cost of their expedition. What I find remarkable is how few have learned anything from the affair, and some of those who clearly have learned, have learned how to better extract money from a shallow, knee-jerk public.

The post today is inspired by a photo I found on the Deneum twitter feed. I will be writing about Deneum, there is a real scientist behind Deneum, but is there real science as well? That’s unclear, but what is very clear is the level of hype, that Deneum is representing itself in ways that will lead a casual reader to imagine they already have a product and merely need to start manufacturing it. So $100 million, please. Here is where to send it.

It’s a rich topic for commentary, but today, I’m following some breadcrumbs found, a blogger who was right and wrong, in a different way, more or less from the other side. The photo above, and the headline is from a post by Huw Price, 21 December, 2015

That date is important. At that point, Thomas Darden had been interviewed at ICCF-19, and had made some positive noises. By that time, Darden knew that something was very off about Rossi, and some — or all — of his positivity may have been about technology other than Rossi’s. At the time, I noticed how vague it was. In early 2016, Rossi claimed to have completed the “Guaranteed Performance Test” and was billing Industrial Heat for $89 million. And it was all a scam, a tissue of lies and deceptions. So, now, because of the lawsuit Rossi filed,  we know, to a reasonable degree of certainty, how the Rossi affair worked and did not work. How does Dr. Price’s essay look in hindsight, and has he ever commented?

I’m using hypothesis.is to comment on that essay, because I don’t want to pay $500 to syndicate it, though it is an excellent essay, in the general principles brought out. I may also, later, copy some excerpts here.

The annotations

. (To see them, one must install a tool from hypothes.is, which I highly recommend. Hypothes.is is not intrusive. To start.)

Having written that, I now find that Huw Price also blogged this himself, as

My Dinner with Andrea. Cute title.

A few months later, Huw Price wrote another essay for Aeon:

Is the cold fusion egg about to hatch?

His speculations were off. Has he followed up?

I’ve been unable to find anything, so far. Will the real Huw Price please stand up?

 

 

 

 

Impressive, eh? How could that be a scam?

But it was. So how was

Looking for “boring,” finding gold

I’ve been spending most of my days, lately, compiling bibliographic material, and setting up archives of LENR conference papers, as well as a full LENR Library. Where I can find an on-line copy of the Proceedings, it’s easy, merely a bit time-consuming. In other cases proceedings may only exist in a few libraries, and it may take time to find those copies. Sometimes scans are made of books, but the cheap way of doing this, at $0.01 – $0.02 per page, involves destroying the book. These volumes, where they exist, may sell for on the order of $300. It is not necessary to destroy the book to read it, and if it can be read, it can be photographed, and that is now easy with smart phones. My 64 GB iPhone could hold high-resolution photos of every page of a 1000-page book, without breaking a sweat. I might get a little tired, I figure I could, with a simple setup, maybe 2 pages per minute. So 500 minutes for a 1000 page book, 8 hours. To avoid RSI, not less than two days. Doable. I will only do this if necessary, and will attempt to share the work.

All needed, perhaps, because nobody bothered to keep and make available original copies of computer files. Material is still being lost. As an example, abstracts and proceedings have recently disappeared from iscmns.org. Documents once hosted by newenergytimes.com have vanished. Sometimes these can be found on the internet archive, sometimes not.

Below, I report benefits of working with this material. Continue reading “Looking for “boring,” finding gold”

Being right is not enough

or How “fusion” created confusion.

We now have strong evidence that the Fleischmann-Pons Heat Effect, sometimes known as the Anomalous Heat Effect, is nuclear in nature and accomplishes the transmutation of deuterium into helium, as the main reaction generating heat, but this evidence was not available in the early days of the field. Skeptics and “believers” conspired (albeit not realizing what they were doing) to call what was actually observed — or claimed, and the two were heavily confused — by Pons and Fleischmann, “cold fusion.” Even when a little careful thought would have exposed the distinction.\

What Pons and Fleischmann observed, in experiments with extreme loading of palladium with deuterium, was anomalous heat, with an apparent energy density or net energy production higher than they could explain with chemistry. They also saw weak signals associated with fusion, specifically, they believed they had seen evidence of neutrons, they detected tritium, and also helium. They did not have quantitative correlations, and  the quantities found of tritum and neutrons and the ratio of heat to tritium and neutrons, and tritium to neutrons, was far different from that expected if they had succeeded in creating normal fusion.

So what they had found, if it was nuclear in nature, was not “d-d fusion,” almost certainly, which is very well known, and which is believed to necessarily produce those products.

I just came across some remarkable language from 1990 that shows the issue. This is in a report to ICCF-1, by Iyangar and Srinivasan, from BARC, the Bhabha Atomic Research Centre, Bombay, India. These were nuclear experts, and there was, for a time, a massive effort to investigate cold fusion.

Wait, to investigate “cold fusion”? What’s that? Getting little details like exactly what one is investigating and why can be, ah, let’s call it useful.

From the abstract, and, remember, I have the benefit of an intervening three decades of history, a huge dollop of hindsight. What I’m seeing here as a misunderstanding that fostered confusion and conflict was something that many, many thought, it was language in common use. From the abstract:

A wide variety of experiments have been carried out by twelve independent teams employing both electrolytic and gas phase loading of deuterium in Pd and Ti metals to investigate the phenomenon of cold fusion first reported by Fleischmann and Pons in March 1989. The experiments were primarily devoted to the study of the emission of nuclear particles such as neutrons and tritium with a view to verify the“nuclear origin”of cold fusion.

Did Fleischmann and Pons report “cold fusion”? It was quite unfortunate that they mentioned the classical fusion reactions in their first paper, because it was totally obvious that what they were seeing, whatever it was, was not those reactions. The evidence that a nuclear reaction was happening was circumstantial, not enough to overcome strong expectation that such reactions would be impossible in the conditions of their experiments

That is, there was heat that they could not explain. If the heat were regular and predictable and reproducible, that could have been enough. But it wasn’t. The heat effect was elusive. “I can’t explain these results with chemistry” is not evidence with which one could convince a physicist. One would first need to convince the physicist that the evidence is clear and not artifact, because if one has telegraphed that you think this is something the physicist will think is impossible, they will examine all the evidence with a jaundiced eye. It’s just human nature.

So “cold fusion” started off with a handicap. It really didn’t help that the neutron evidence that Pons and Fleischmann adduced was artifact. What we know now is that very few neutrons, if any, are generated with their experiment.

(We need to realize that many difference kinds of experiments get lumped together as “cold fusion,” but different experiments may actually show different results, different reactions might be happening under conditions that are sometimes not adequately controlled. By conceptualizing the object of study as “cold fusion,” an assumption is created of a single phenomenon, and then when results differ, the reality of the alleged phenomenon comes into question.l)

What was reasonably being investigated was the possibility of nuclear phenomena in certain metals loaded with deuterium. The first issue to investigate was, for most groups, heat. But groups with a particular interest in nuclear physics often investigated neutrons, and when it was found that many replication attempts produced very few neutrons, this strengthened skepticism. There was also a common assumption that if nuclear reactions were happening, there must be neutrons. That is simply false, but the absence of neutrons from what was being assumed to be deuterium-deuterium fusion, that’s actually a very dificult puzzle.

The first order of business was to detect, measure, and correlate phenomena, not to interpret the results, but this was all pre-interpreted. They were investigating “cold fusion.” Not, say, “the Fleischman and Pons reports of anomalous heat.”

Ask a physicist, could there be deuterium fusion in palladium deuteride at room temperature, and he or she is likely to tell you, straight out, “No.” But ask this scientist if there could be a heat effect of unknown origin, and if they are worth their salt, they would tell you, well, we don’t know everything and sometimes it can take time to figure out what is happening.

Tbe report desperately needing confirmation was what Pons and Fleischmann had actually observed, once the confusion over their neutron reports was cleared up. “Cold fusion” was an interpretation, not an experimental fact, or certainly not yet.

Tritium was widely observed, it wasn’t just BARC. But was the tritium connected with the prime Fleischmann=Pons effect, the heat? And then things really got crazy when reports started to show up of a heat effect with light hydrogen. Again, the concept of a single phenomenon caused confusion. It is not that we know there is more than one reaction, we don’t know that yet. But it is quite possible, the “law of conservation of miracles” is not a law, and cold fusion is not a miracle. It’s something that doesn’t happen very often, and while I use the tern “cold fusion,” often, I would not use it academically without clear definition. At least I hope not!

By “cold fusion” i mean the FP Heat Effect and other possible affects commonly associated with it or believed or claimed to be related. I justify the use of the term because the known product from the FP Heat Effect is helium, which is, Ockham’s Razor with the evidence we have, coming from the conversion oi deuterium to helium. That is fusion in effect, which must be distinguished from “deuterium fusion,” i.e., two deuterium nuclei fusing. Why? That reaction is very well known and the products are well known, and there are reasons to consider that even if this happens somehow at low energy, the products will be the same.

(When a physicist claims that “cold fusion” is impossible, because of the Coulomb barrier making the fusion rate be so low as to be indetectable, they are being sloppy, because muon-catalyzed fusion takes place at extremely low temperatures. Muons act as catalysts, so the immediate question arises, could something else catalyze fusion. An inability to imagine it is, again, not evidence. The universe is vast and possibilities endless, we cannot know all of them, only what is common.)

In 22 different electrolytic experiments whose cathode surface areas ranged from 0.1 to 300 cm2 , large bursts of neutrons and/or tritium were measured. Some of these gave clear evidence that these two nuclear particles were being generated simultaneously. The neutron-to-tritium yield ratios in the majority of these experiments was in the range of 10-6 to 10-9.

“Large bursts” is suspicious. Large compared to what? I have not read the report in detail yet. (I will). But tritium is a minor effect associated with the FP Heat Effect. It may be the case that tritium is enhanced if there is substantial light hydrogen in the heavy water, but even a little light water tends to suppress the FP Heat Effect. Even if there is some single mechanism, it behaves differently when presented with different fuels. The norm with cold fusion experiments, though, is that high-energy radiation and radioactive products are found only at very low levels. The rule of thumb, I state as tritium being a million times down from helium, and neutrons a million times down from helium. Helium production, with deuterium fuel (helium is not reported with light hydrogen as fuel, and we don’t know the product of light hydrogen “cold fusion.”

Those ratios are strong evidence that “cold fusion” is not d-d fusion, because the operation of d-d fusion, how and why the nucleus normally fragments, is well understood. I.e, the fused nucleus, the product of that fusion, is highly energized, it’s hot. That is true even if the reaction is not hot fusion (and the kinetic energy involved with fusion from the velocity of impact is dwarfed by the energy of collapse, as the nucleons collapse under the influence of the strong force. (Very strong force!)  There is so much energy that normally the nucleus breaks into two pieces and there are only two ways it can do that. It can eject a proton or it can eject a neutron, to carry away that energy and leave the nucleus in the ground state, cool. That’s the two branches, and it is mostly equal which nucleon ends up being odd man out. Hence the two common branches,

1H2 (deuterium)+ 1H2 -> 1H3 (Helium-3)+ 1H(light hydrogen, a proton) + energy

1H2 + 1H2 -> 2He3 (Helium-4) + 0N 1 (a neutron) + energy

And then the third branch is very rare. If the nucleus happens to be exactly balanced (I think, maybe balance is not an issue, just the odds), and manages to live intact long enough to generate a photon, the nucleons can stay together and almost all the energy is dumped into the photon, which is very high energy, 23.8 MeV. (The rest of the energy is in the recoil of the helium nucleus.) I think the branching ratio for that is one in 10^-7 reactions. One in ten million.

So that becomes another miracle that exercised Huizenga. If somehow the fusion happens (spectacularly unlikely!), and somehow it manages to produce helium (very unlikely), there must be a gamma ray, a very energetic one. This would be, at the heat levels reported, very dangerous. It’s not observed. That’s strong evidence that d+d fusion is no happening.

Something else is happening. In that context and with that understanding, and given the mishegas about “cold fusion” it was important to be investigating phenomena, not explanations. Tritium was actually contradictory to the FP Heat Effect, in general. It was lumped together with it because if tritium was being produced, “something nuclear” was happening. But what is the evidence that the heat was nuclear. Maybe if we look carefully, we will see nuclear reactions happening at low levels in unexpected places.

A unique feature of the BARC electrolysis results is that the first bursts of neutrons and tritium occurred (in 8 out of 11 cells) on the very first day of commencement of electrolysis, when hardly a few amp-hrs of charge had been passed.

This is evidence that the effects they are seeing are not the FP Heat Effect! It doesn’t happen that early, in FP type electrolysis experiments. There are rapid effects reported with codeposition, a different approach.

But the occasion for this post was the linguistic anomaly here. I’ll repeat it:

The experiments were primarily devoted to the study of the emission of nuclear particles such as neutrons and tritium with a view to verify the“nuclear origin”of cold fusion.

“Fusion” is a nuclear reaction. So they are looking to verify the nuclear origin of a nuclear reaction. It’s a tautology. As to looking for nuclear particles associated with what was called “cold fusion,” the FP Heat Effect, they are missing, mostly. What BARC found was at very low levels. Helium was suspected early on, but (because of no gammas) was not given a great deal of credence, and there was an additional reason to doubt helium evidence: helium is present in the atmosphere at levels normally greater than those expected if the FP Heat Effect were producing helium. So in many experiments (not all), leakage can be a possible artifact. It took careful work (beginning with Miles as to what I know so far) to actually show that helium is the main product of the FP Heat Effect.

That has been done, and confirmed many times. Tritium, however, is interesting, scientifically, and there is much work still to be done with tritium, and in particular, investigating tritium correlations with other products and conditions.

 

ICCF-21 Detailed Agenda

IICF-21 Detailed Agenda =  (original on ICCF-21 web site)

SHORT COURSE SPEAKERS (Sunday 3 June 2018)

  • 10:00 Introduction and Issues, David Nagel
  • 10:40 Electrochemical Loading, Michael McKubre
  • 11:20 Gas Loading, Jean-Paul Biberian
  • 12:00 Lunch
  • 13:30 Calorimetry and Heat Data, Dennis Letts
  • 14:10 Transmutation Data, Mahadeve (Chino) Srinivasan
  • 14:50 Break
  • 15:10 Materials Challenges, M. Ashraf Imam
  • 15:50 Theoretical Considerations, Peter Hagelstein
  • 16:30 Commercialization, Dana Seccombe & Steve Katinsky
  • 17:00 (end)

REGULAR CONFERENCE PROGRAM

18:00 Reception

20:00 Lounge