Subpage of JCMNS

Experiments and Methods in Cold Fusion

Volume 28, February 2019

Proceedings of the International Conference on the Application of Microorganisms for the Radioactive Waste Treatment
Busan, South Korea, May 2018

© 2019 ISCMNS. All rights reserved. ISSN 2227-3123

front matter includes Table of Contents and Preface by Shanghi Rhee.

An Experiment in Reducing the Radioactivity of Radionuclide (137Cs) with Multi-component Microorganisms of 10 Strains
Kyu-Jin Yum, Jong Man Lee, GunWoong Bahng and Shanghi Rhee
“Biological Transmutation” of Stable and Radioactive Isotopes in Growing Biological Systems
Vladimir Vysotskii and Alla Kornilova
Biological Transmutations
Jean-Paul Biberian
Nuclear Transmutations and Stabilization of Unstable Nuclei in the Cold Fusion Phenomenon
Hideo Kozima
Thermodynamic Prediction for Novel Environmental Biotechnologies of Radioactive Waste Water Purification
Oleksandr Tashyrev, Vira Govorukha, Nadiia Matvieieva and Olesia Havryliuk
Novel Biotechnologies for Purification of Radioactive Waste Water
Vira Govorukha, Oleksandr Tashyrev and Valery Shevel


subpage of iccf-21/videos/

Thomas F. Darden – Keynote address for ICCF-21

link to video
David Nagel:
00:00 . . . With this introduction even though it’s 00:01 a little unusual to do that.
Tom 00:03 Darden has a remarkable career. He got a 00:06 bachelor’s degree from the University of 00:08 North Carolina, and also Master in 00:10 Regional Planning, got his law degree 00:12 from Yale.
His 1976 undergraduate thesis 00:18 analyzed the environmental impact of 00:20 third-world development, and his 1981 00:23 Yale thesis addressed interstate acid 00:26 rain pollution.
So he’s had a long 00:28 history in things environmental.
He began 00:31 his career with Bain & Company in Boston, 00:33 ’81 to ’84, and then beginning in 1984 he 00:37 served for 16 years as the chairman of 00:39 the Cherokee Sanford group, which 00:41 curiously — i didn’t know this — is the 00:43 largest private brick manufacturing 00:45 company.
Okay so in brick and mortar, he 00:47 was on the brick side.
He began investing 00:50 personal capital and environmental 00:52 companies before he turned to raising 00:54 institutional private equity funds.
Since 00:58 the 1980s, he has invested in over a 01:00 hundred companies, and there’s a long 01:02 list here of green buildings and solar 01:04 energy, and all kinds of things, including 01:06 Industrial Heat LLC, which is, of course, 01:09 seeking to commercialize LENR. Tom 01:14 is the founder and CEO of Cherokee and 01:16 its predecessors.
Cherokee has raised 01:18 over 2.2 billion dollars, invested this 01:21 capital in the acquisition, cleanup, 01:23 development and sale of approximately 01:25 550 environmentally contaminated real 01:28 estate assets, in the U.S., in Europe, and 01:31 in Canada.
Tom does a lot beside his 01:35 business. He’s served and continues to 01:37 serve on numerous boards.
That’s a long 01:39 last year: Environmental Defense Action 01:42 Fund, WakeMed Hospital, 01:45 Helping Hand Mission, so he is into a lot 01:49 of things beyond the business side of 01:51 the world.
He was a chairman of the 01:53 Research Triangle Transit Authority, 01:54 served two terms on the North Carolina 01:56 Board of Transportation, through 01:58 appointments by the government and the 02:00 speaker of the house.
So it is my immense 02:02 and intense pleasure to welcome Tom 02:04 Darden
02:09 [applause] Thomas Darden:
02:14 okay i’d like to begin by thanking the 02:22 organizers stephen and david for their hard 02:27 work, and also for the honor of being 02:29 able to address the pioneers working on 02:32 this new form of energy.
I’m going to 02:38 take this opportunity to tell you the 02:39 story of why we do what we do, and how we 02:43 perceive the work that you heroes, are 02:45 doing.
Three years ago i had the 02:47 opportunity to meet many of you in Padua.
02:50 as i said that time i’m not a scientist, 02:52 i’m an entrepreneur, but we share a 02:55 common inspiration in our endeavors. 02:58
Business guru Peter Drucker once noted 03:02 that entrepreneurship is intended as a 03:04 manifesto, and as a declaration of 03:07 dissent. We see things that ought not to 03:10 be, or we see things that ought to be, but 03:13 aren’t, and then we dissent, but next, we 03:17 go to work.
Thank you for being the 03:20 dissenters against the doctrines and 03:22 institutions of the status quo. Our 03:24 mission, like yours, remains focused on 03:28 solving one of the world’s biggest 03:29 challenges of our time. We need energy 03:32 alternatives that don’t add to our 03:34 pollution problems.
That’s the reason 03:37 that we got involved in funding your 03:40 research.
Marginally reducing pollution 03:44 by being a little bit less bad is not 03:46 good enough.
We need to turn back the 03:49 clock. 03:49 we need a gestalt shift with 7.5 billion 03:53 people facing increasingly catastrophic 03:55 existential threats.
When we started 03:58 Industrial Heat six years ago, with our 04:00 mandate to bring serious funding and an 04:02 entrepreneurial spirit to your research, 04:04 we hoped there would be a way to change 04:06 the way the world’s energy needs are met.
04:08 in an ironic manner, we determined that 04:12 the potential promise of your research 04:14 was so compelling, that it would be worth 04:16 funding even if all we accomplished was 04:19 to somehow prove that 04:20 it was untrue.
We believed that we could 04:23 help change the way mainstream science 04:25 and business perceive this sector, and 04:27 help lead the way toward more 04:28 comprehensive environmental stewardship 04:30 for our planet.
I’m confident that you’re 04:33 going to succeed and that your work is 04:35 going to be accepted.
As we launch the 04:40 21st gathering of this tribe, we still 04:42 need a new paradigm.
Take a step back, and 04:45 think about why we’re here, and why this 04:47 has been such a challenging and difficult 04:49 journey.
04:49 why have some of you been chasing these 04:51 elusive phenomena for almost 30 years? 04:54 what drives that dedication, curiosity, 04:57 risk-taking, and willingness to sacrifice 04:59 in pursuit of what remains an evanescent 05:02 and intriguing effect.
Meanwhile why are 05:06 we so isolated, and has this isolation in 05:09 fact played a positive role in these 05:11 early stages of the paradigm shift?
When 05:15 we first looked into this sector, i was 05:18 warned that this was an alluring and 05:21 captivating pursuit, and that could 05:23 result in joining an isolated and 05:25 dedicated community.
We were warned about 05:28 catching CFS or Cold Fusion Addiction 05:31 Syndrome.
Humor aside, if we’re honest 05:35 with ourselves, we have to recognize that 05:37 peer systems have great influence on 05:40 what most of us believe and do.
We 05:43 observe others in our peer groups, and 05:45 learn their social code along with their 05:47 interpretation of the philosophical and 05:50 scientific fabric that evolves into some 05:53 version of truth, reality, and conformity.
05:56 this can be beneficial because it 05:58 allows us to create an affiliated tribe, 06:01 like our group here, but increasingly in 06:03 society at large, our social or work 06:06 communities lack diversity of thought, as 06:08 evidenced by the most recent us election 06:12 results, the map.
Once we perceive what 06:16 we’re supposed to think, we 06:17 subconsciously seek out, and then we’re 06:19 fed data that confirms our group opinion, 06:23 and we skillfully and deliberately 06:25 ignore contrary facts.
If we don’t do 06:29 this we impair our ability to benefit 06:32 from the culture 06:34 around us.
Socially, scientifically, 06:37 financially, or politically, there’s a 06:39 pressure to conform.
This sociological 06:43 conformity pressure applies to many of 06:45 our belief systems, making it difficult 06:47 for people to practice their pursuits 06:49 while being a part of a non-conforming 06:52 group.
Over time, the world has become 06:55 less tolerant of divergent beliefs, 06:57 making it difficult for new ideas to 06:59 gain traction.
Meanwhile some long-accepted 07:01 value systems have eroded.
Have 07:04 we lost a scientific rigor, self policing 07:07 and accountability, that carried the day 07:09 when atomic power, space travel, 07:11 supersonic flight, the computer, the 07:13 internet and recombinant dna were 07:15 discovered and harnessed for the 07:17 benefit of society?
Today, can an 07:20 independent thinker confront prevailing 07:23 scientific or cultural norms, without 07:25 risking job prospects, scientific 07:28 position, social status, and personal 07:30 relationship opportunities even.
Dan 07:33 Kahan, professor at Yale, refers to this 07:36 as cultural cognition, meaning that 07:38 society, as opposed to independent logic 07:42 or reality, drives our thinking.
He 07:46 focuses primarily on the realms of 07:48 science or technology that affect public 07:50 policy such as climate change or maybe 07:52 childhood vaccines.
Kahan states a 07:56 principal source of conflict over 07:58 decision-relevant science is the 08:00 entanglement of facts in antagonistic 08:03 social meanings, which transform 08:06 competing positions into badges of 08:08 cultural identity.
In other words, we 08:10 disagree because competing cultural 08:12 groups have decided to identify with 08:15 certain conclusions.
The correct answers 08:19 are not based on facts, but on scientific, 08:22 political or cultural identity.
When a 08:26 particular group gains power or control, 08:28 then opposing ideas face the risk of 08:30 marginalization.
Kahan tested subjects 08:33 for scientific intelligence and for 08:35 political identity, and then asked 08:37 science-based questions, both 08:39 right-leaning and left-leaning 08:41 respondents in the United States showed 08:44 similar tendencies to conform their 08:45 technical opinions 08:47 to the thinking of their 08:49 group affiliations.
For example most 08:52 left-leaning subjects answered that 08:53 nuclear power contributes to global 08:55 warming, even though that is logically 08:59 ridiculous.
.while nuclear energy has 09:02 drawbacks and reasonable people can 09:03 debate its pros and cons, there’s no doubt 09:05 of its global warming benefit.
Why do 09:08 even intelligent liberals say that it 09:10 causes global warming?
The only 09:12 explanation is that left-leaning 09:13 cultural leaders have decided that 09:15 nuclear power is negative, so it’s not 09:18 acceptable to say anything positive 09:20 about it at all.
09:21 of course right-leaning thinkers shows 09:24 similar conforming tendencies.
And by the 09:27 way level of education does not change 09:29 the results.
This is astonishing.
Kahan 09:32 found that higher iq people are just as 09:34 inclined to base their conclusions on 09:36 cultural conformity rather than 09:38 intelligent analysis.


This astonishes the 09:41 intellectual class, who think they use 09:42 their brains to seek truth, but it’s not 09:44 surprising at all to normal people who 09:46 have always felt that intellectuals 09:48 don’t have much common sense to go along 09:50 with all their brains.

Interestingly we 09:53 do see some situations where cultural 09:55 conformity fails to offer a safe 09:58 consistent opinion.
Old topics tend to 10:01 remain in their cultural containers 10:03 forever, such as gun rights in the us, 10:05 pro-life, vs. Pro-abortion positions, and 10:08 probably cold fusion relative to the 10:10 physics establishment.
But new topics 10:13 present dilemmas for group thinkers.
Will 10:16 right-leaners oppose government 10:17 restrictions on artificial intelligence, 10:20 or machine learning, or data mining, maybe 10:22 new energy sources. 10:24 why didn’t us left-wingers oppose 10:27 healthcare monopolies, and price-fixing 10:30 in the same manner that they’ve 10:31 traditionally opposed business 10:33 aggregation of other forms.
10:34 will conservatives take a laissez-fair 10:37 position regarding antitrust enforcement 10:39 against new economy monopolists, like they 10:42 did relative to old industrial 10:43 monopolists?
It seems that people are 10:46 willing to remain confused and silent 10:48 until their group forms an opinion, at 10:50 which time they will conform.
In an ideal 10:53 world, people would invite and welcome 10:54 divergent opinions.
Instead, we often see 10:58 vitriolic and demeaning attacks on 11:00 those who hold them.
For example, the 11:02 label “denier” has come to describe 11:05 people who disagree not only with 11:06 historical facts, but also with 11:09 subjective, unclear, social, technical, and 11:12 scientific beliefs.
It’s used to expand 11:15 the distance between two opposing moral, 11:17 scientific, or intellectual convictions, 11:20 or to ostracize the other side.
11:23 certainly there are times when we use 11:24 the term legitimately and intentionally 11:26 to create separation, as some do when 11:29 referring to holocaust deniers. They deny 11:32 an historic fact.
But what if someone 11:34 argues that climate science is not 11:36 perfect yet, or that the theory of 11:38 evolution needs to evolve further? Are 11:40 they deniers or are they just thinkers?
11:43 looking at this from another angle i’ve 11:45 served for over 25 years on the board of 11:47 an historically black university, where 11:49 i’m almost always the only white 11:51 person in the room.
Years ago, someone 11:54 mentioned getting pulled over by the 11:55 police for dwb, or driving while black, a 11:58 practice that i assumed had ended in 12:01 this civil rights era.
12:02 i mean it’s so ridiculous and you can 12:05 only laugh.
I innocently asked if this 12:07 was still a common occurrence, and i was 12:09 fortunate that the nice people in the 12:11 room politely smiled at my simplistic, 12:13 culturally-driven view.
I should note 12:16 that this event long predated dashboard 12:18 and body cameras, which have shown the 12:21 rest of us, sadly, what african americans 12:23 have known, have always known, and had to 12:25 deal with.
Sensitive topics such as these 12:28 often lead to shaming, and in a different 12:31 setting might possibly have evolved into 12:33 accusations of “racist denier” instead of 12:35 “naive enquirer.”
Environmental advocates 12:38 used “climate denier” to shame opponents 12:40 of bureaucratic legislation to reduce 12:43 carbon emissions.
An environmental public 12:46 relations program was built on the 12:48 concept — i was part of this — the global 12:51 warming science is indisputable, and 12:53 there could be no further discussion of 12:56 the topic.
I was raising my hand saying 12:58 “it just doesn’t sound right, even if 13:02 it’s true.”
Many who believed carbon 13:04 dioxide causes climate change were 13:06 nonetheless troubled by this dismissive 13:08 and vitriolic debate tactic.
If anyone 13:13 ever says the science 13:14 is settled, be careful.
The science will 13:15 never be settled, if we remain curious 13:17 enough to learn, while maintaining a 13:19 desire to seek truth.
Most mainstream 13:22 physicists believe our science is 13:24 settled, in that low-temperature 13:26 energetic reactions, that were 13:28 researching here, are not possible.
13:30 followers of these mainstream opinion 13:32 leaders mimic their philosophies and 13:34 behaviors, further alienating those who 13:37 disagree, and spreading discord which 13:39 increasingly stresses our scientific 13:40 fabric.
This holds back potential 13:43 benefits that can change the status quo 13:45 for the benefit of society.
This cultural 13:48 conformity, by the way, applies just as 13:50 dramatically in companies.
Bill gates had 13:53 a habit of rocking back and forth in his 13:54 chair, when he was in meetings during the 13:56 early days of his startup.
After a while 13:59 subordinates began to exhibit 14:00 the same 14:02 unusual habit of rocking back and forth.
14:05 microsoft meetings became filled with 14:07 with conformist doing the same thing as 14:10 a boss, probably subconsciously.
While this 14:13 is a silly example we regularly see 14:15 accusations of discrimination against 14:18 new york investment banks, silicon valley 14:20 vcs and large tech companies.
Their 14:23 inherent discrimination is based on 14:25 cultural group think.
We all need to 14:28 contemplate and avoid this, as our small 14:30 sector continues to evolve and mature.
So 14:34 what does this mean to this gathering, 14:35 how do we interpolate and act based on 14:37 what we know about ourselves?
There’s 14:39 story after story of discovery, rejection, 14:42 perseverance, verification, replication, 14:45 and ultimately ubiquity: the airplane, the 14:48 automobile, the laser, space travel ,and 14:50 more.
The leading thought groups of the 14:53 day have consistently resisted new 14:55 invention, breakthroughs and change.
Now 14:58 it’s our turn to change our status quo.
15:00 how can we learn from others who 15:03 converted their rejection into 15:04 usefulness?
They were able to move 15:07 through stages of progression that 15:08 brought their discoveries into common 15:10 acceptance.
Mainstream academia, science 15:14 and government stall the first wave of 15:16 cold fusion discovery. Next march will be 15:19 30 years since the announcement that 15:21 launched this field.
We owe it to the 15:24 early pioneers, and to our planet, 15:26 to responsibly finish this work, and move 15:29 the discussion into the mainstream of 15:31 science, academia and industry.
How do we 15:34 move forward from our isolation? We need 15:36 theory that can direct basic, repeatable 15:38 and understandable experiments.
We need 15:41 experiments in papers that will be 15:42 replicated and accepted by mainstream 15:44 physicists and science communities and 15:47 publications.
We need to trust, but verify, 15:50 and commit to absolute honesty in our 15:53 research.
We need a new level of self-accountability, 15:57 as we prepare for a move 15:58 into the mainstream.
The universe may be 16:01 ready to share another layer of physical 16:03 and scientific mystery with those who 16:04 are willing to see and hear.
The barriers 16:07 created by our social and scientific 16:08 orders are going to be challenged.
First-principles 16:11 research needs to replace 16:13 incomplete and sometimes shoddy 16:15 methodologies.
With this we will overcome 16:18 the bias and barriers that have kept our 16:20 field from becoming useful to the planet.
16:22 we can fix this.
Before i close, i’d like 16:26 to thank the many dedicated and honest 16:28 researchers who have worked with us in 16:30 our quest to find the truth over the 16:31 last six years.
We thank you for trusting 16:34 us, and look forward to reaching a 16:36 starting point, where a broader community 16:38 can begin to understand this anomaly 16:40 that has the potential to eliminate 16:41 pollution.
We look forward to an ongoing 16:44 relationship with you, to living each day 16:46 with courage, to continue progress, mutual 16:49 accountability, and to eventual success.
16:51 to the group, let’s find ways to work 16:54 together let’s encourage replications, 16:56 and be willing to accept results in 16:58 datasets which fail to confirm a 17:00 replication.
In conjunction with any 17:02 proclaimed discoveries let’s also admit 17:04 our mistakes, and make data from failed 17:07 experiments available for others to 17:08 analyze.
With that, a broader trust and 17:11 credibility can begin to emerge.
Let’s 17:14 live each day with courage, learn from 17:15 each other, do the right thing, be 17:17 respectful in the process, talk less and 17:19 say more.
Be tough but fair, while we 17:22 strive to move this field beyond the 17:24 fringe with the conviction and common 17:26 goal of saving our planet.
Humanity needs 17:28 for us to succeed.
Thank you and God 17:31 bless.

ICCF-21 Slides and Video, Transcripts available

The organizers of ICCF-21 have released oral presentation slides and video. The page to access them is at https://www.iccf21.com/videos-oral-presentations

There are actually three pages, with a graphic display of links that vary with the page. The link above is to the video link graphic, there are two others:

The slide graphic, and the abstract graphic.

However, our video index page is searchable. and will be a single page with all links.  That is where links to transcripts and other related resources will be placed. It takes about an hour to create a presentation transcript in the format I am using, and about a day to clean it up and polish it.

I will be creating indexes to this material, to make it more accessible for search and study.  For the first time, Darden’s keynote is available. The video I’ve seen is high quality and far surpasses the poor audio we had for some presentations (which was still appreciated, people provided what they had.)

Because there is Close Caption working with the videos (at least what I saw), I will also be preparing transcripts.

UPDATE:Done. This is the video page here.

The first transcript I started with was of Tom Darden, but I happened to complete the Michael Staker transcript first.  I will now go back and present the Darden video in the same way. I will also integrate the slides and abstracts, so one will be able to read the transcripts and make sense out of the references to slides.

This process is highly enlightening. In the case of the Staker video, I had already worked extensively on SAV sources, so everything he was saying made sense (and I could more accurately decode the automated transcription text). I had already worked with a draft of Staker’s ICCF-21 paper and Mike McKubre’s presentation at Greccio, which was co-authored with Staker, collecting all the sources. So it’s now all quite clear to me, amazingly so, from being obscure and “hard to understand.”

How to capture a YouTube transcript (general and ICCF-21 specific).
  1. Go to the YouTube page. The ICCF-21 videos are all listed in a single YouTube channel.
  2. [Below the title is a menu button ( . . . ). Press it and select “Open Transcript.” A window will open with the closed caption transcript. Ctrl-A within that window to highlight it, and Ctrl-C to capture it in your clipboard.] The italicized description worked when I was writing this. I just tried it again, and instead of just selecting the text in the transcript window, it selected much else on the page. To capture just the transcript text I needed to put the cursor at the beginning, maybe select a little text at the beginning — left-mouse-hold at the beginning and then move a little — and then shift-left-click at the end after scrolling to the end. (ctrl-home places the cursor at the beginning of the transcript and ctrl-end places it at the end). Then ctrl-C will copy the selected text.
  3. [Paste this into a word processor or other editor. I found that if it is straight pasted (which includes formatting) into the WordPress visual editor, every line is a link to the video, with the brief transcript for the time shown as the next line.] Again, that’s what I was able to do earlier, and I was unable to reproduce this behavior. So the text doesn’t have the links, those will be introduced in Excel.
  4. At this point the text is useful. If I have this text for a video, I can then proceed to create the WordPress page. The further this is taken, the less work for me.
  5. I copy the youtunr transcript to Excel, to massage that copy into the format I want on the page. The URLs are translated to specific jumps to the specific times, by adding “&t=12m34s” to the URL. (that would be a timestamp for 12:34. My guess is that “h” is used for hours.) The time, from the next line, is moved to the text portion of the “a” tag, and the </a> tag closing is moved to just after the time, leaving the transcript text open, unformatted.
  6. This will give a transcript with the timestamps as links followed by a space and the text.. I then add in the HTML code to display the time in 6 point type, to make it less obtrusive but still readable. Replace {<a}  with {<span style=”font-size: 6pt;”><a} (don’t copy the curly braces!) and {</a>} with {</a></span>}. 4 point can be used for this, it is sort-of readable. However, it’s useful to have it be more readable when editing the transcript.
  7. To speed up editing of this into continuous text, paragraphed, I replace all the LF/CR codes (represented in Word search and replace as “^p”) with spaces, so it becomes one huge “paragraph.” Then, editing the transcript, I paragraph it, simply by adding punctuation and a return (“Enter↵”).
  8. The HTML code is then copied back to my WordPress editor.
  9. I clean up the transcript in WordPress. At any time, I can follow a timestamp link to find the exact point in the video. If I press the link just before some text, there it is, quickly. However, because it takes some time for my computer to load the video, when editing, I have WordPress open in one window, and the YouTube video in another, so I can immediately press the stop/run button in the video, and so if I want to adjust the time, usually to go back, I use the YouTube slider and I know what time to go to, approximately, by the displayed link in WordPress.
  10. Once the text is paragraphed, I can add (in word) spacer code, to reduce the space. I’m using ten pixels instead of the default space (which I think is 20 pixels.) I’m using a WordPress shortcode from the Spacer plug-in for that. It’s a little tricky.
  11. The ICCF-21 has the slides available, and the presentations can make much more sense with the slides! I downloaded the slide PDF, renamed it with a simpler but still unique name, and used ILovePDF to convert this to individual JPEG images, Powershell to change the filenames to simple followed by the page number, and then I uploaded the files to the blog domain in a slides directory, uploads/slides, then I used MediatoFTP to register these as images. I used to manually upload all the images within WordPress, which puts them into dated media directories with much longer names. This gives me immediate access from the editor to the slides, searchable by slide number, and the Media facility remembers the last search, so I can just bump the number of to insert the next slide.
  12. So I watch the video again, inserting the slides. The normal place is in the time sequence when the speaker clicks to the next slide. For clarity, I vary this. Some speakers use many slides where another will use one, the many slides each adding something to the display.
  13. I add the slide numbers in Excel when I’m done. It’s too much work to add them when placing the image, and I found that if the slide number is put as a caption, it’s weirdly place. It was much easier to place the slide number as small text just before the image.
  14. You can see the results on two pages at this point: Staker and Storms.
  15. Comments are invited.
  16. Participation is invited.

I cannot imagine a better way to develop deep understanding of CMNS than work like this. To do this work well requires deep attention to detail. If you are unfamiliar with terms, you will become familiar, or you will make mistakes in editing the transcript.

I have the brain of a 74-year old.  They must have made some mistake!

It takes more repetition to learn than when I was younger, but I can still learn and the results are little short of amazing, certainly for me!

As to those mistakes, we hope, someone will find and correct them, and we will learn if we pay attention. Making mistakes is generally the fastest way to learn, and any error in these transcripts can be quickly fixed. I am considering putting them on the wiki, which would stand as a working draft.

I see that the following is somewhat redundant to what is above, but, hey, it’s only a paragraph. . . . The Staker and Storms videos are particularly significant now, considering discussions in the community about Super Abundant Vacancies. From working with sources, a presentation in Greccio this year and those two videos, I have enough familiarity with the findings that, to my great surprise, at least one major expert has deferred to my opinion. But I’m certainly not a full expert, just an opinionated reporter who loves to inform my readers as to what exists in sources, so that they can come to their own conclusions. I will report my opinions, sometimes, but they matter much less. Increasingly, they are informed.

The related fields are complex and can take advanced study and training, but, by continual exposure to the material, I become familiar with it.

I learned years ago to notice and drop the “this is too complicated” reaction that creates an obstacle to familiarity.

Our strong tendency is to remember what generates feelings, particularly feelings of dislike, rather than what is actually happening.

I actually don’t “try” to understand, I just keep looking, more or less like a child. Maybe I look something up if it seems interesting.

If I write, I check sources, over and over, I don’t just rely on memory, usually.

Since I have the sources, I cite them. All this can make my writing long. I write polemic in a different way.

I learned electronics and made it into a successful profession, when I was about 30, by having a basic background (but from many years before, obsolete, hey vacuum tube radios!), and then just looking at electronics magazines, and having a work opportunity allowing me to focus and learn some specifics. I did not “study” it.

I learned Arabic by reading the Qur’an in Arabic. (That simply requires learning the symbols, Qur’anic orthography is phonetic. Understanding Arabic came much later, after familiarity was developed. That’s a theme: familiarity.) Again, I did not learn by studying it. The fastest increase in comprehension actually came when I memorized a large chunk of the Qur’an. Before then, when I tried to study Arabic with grammars, etc.., it went in one eye and out the other. (Hah!) Arabic is famously difficult for non-Semitic language natives. But children learn it just as easily as other languages. Familiarity. Once I was familiar with the patterns of the language, the grammars then made far more sense. Otherwise they seemed like a pile of arbitrary rules to memorize.


Subpage of Proceedings

International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals
13-18 October 2007

http://www.iscmns.org/catania07/index.htm described the Workshop. No link is given there to the Proceedings. The ISCMNS copy of the Proceedings is broken. Jed Rothwell has now uploaded a copy to lenr-canr.org: RothwellJproceeding.pdf

(The ISCMNS copy has now been repaired.)

Front matter. (includes title pages, copyright, Table of Contents, and Preface.) The original Table of Contents has no author names. They are supplied here. The title for the paper beginning on page 329 was on page 328, and the page number was then incorrect in the TOC. This has been fixed in this TOC.

stripped_IWAHLM-8 362 pp., 5.3 MB (has front matter removed so that pdf page matches published page).

Proceedings of the 8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals

13-18 October 2007, Sheraton Catania, Sicily, Italy

Edited Jed Rothwell and Peter Mobberley

The International Society for Condensed Matter Nuclear Science Copyright © 2008, The International Society for Condensed Matter Nuclear Science

All rights reserved. No part of this publication may be reproduced in any form without the prior permission of the copyright owner.

ISBN 1-892925-04-4

Printed in the U.S. by InstantPublisher.com

Table of Contents

The Organizer’s personal perspective
Bill Collis
Preparata Medal Lecture – A Tribute to Giuliano Preparata, a TRUE Pioneer in Cold Fusion Theory
George H. Miley
Erzion Model Features In Cold Nuclear Transmutation Experiments
Yu. N. Bazhutov
Excitation of Hydrogen Subsystem in Metals by External Influence
I. P. Chernov , Yu. M. Koroteev , V. M. Silkin, Yu. I. Tyurin
Roles of Approximate Symmetry and Finite Size in the Quantum Electrodynamics of d+d⇒4He in Condensed Matter Nuclear Science
Scott R. Chubb
Synthesis Of A Copper Like Compound From Nickel And Hydrogen And Of A Chromium Like Compound From Calcium And Deuterium
J. Dufour, D. Murat, X. Dufour and J. Foos
External Radiation Produced by Electrolysis — A Work in Progress
John C. Fisher
Outline Of Polyneutron Theory
John C. Fisher
Theoretical Hypothesis of a Double Barrier Regarding the D-D Interaction in a Pd Lattice: A Possible Explanation of Cold Fusion Experiment Failures
Fulvio Frisone
Common Mechanism of Superconductivity, Superfluidity, Integer and Fractional Hall Effects, and Cold Fusion
F.A. Gareev G.F. Gareeva and I.E. Zhidkova
Quantization of Atomic and Nuclear Rest Masses
F.A. Gareev G.F. Gareeva and I.E. Zhidkova
Observation of 3He and 3H in the volcanic crater lakes: possible evidence for natural nuclear fusion in deep Earth
Songsheng Jiang , Ming He , Weihong Yue , Bujia Qi , Jing Liu
On emission of nuclear particles caused by electrolysis
Ludwik Kowalski
Analysis of #2 Winthrop Williams’ CR-39 detector after SPAWAR/Galileo type electrolysis experiment
Andrei Lipson , Alexei Roussetski , Eugeny Saunin
Analysis of the CR-39 detectors from SRI’s SPAWAR/Galileo type electrolysis experiments #7 and #5. Signature of possible neutron emission
Andrei Lipson , Alexei Roussetski, A.G. Lipson1 , A.S. Roussetski , E.I. Saunin , F. Tanzella , B. Earle , and M. McKubre
“Excess heat” in a Gas-Loading D/Pd System with Pumping inside palladium Tube
Bin Liu, Xing Z. Li, Qing M. Wei, Shu X. Zheng
Selective Resonant Tunneling through Coulomb Barrier by Confined Particles in Lattice Well
Xing Zhong Li, Qing Ming Wei, Bin Liu, Nao Nao Cai
Anomalous heat Generation by surface oxidized Pd wires in a hydrogen atmosphere
A. Marmigi , A. Spallone, F. Celan, P. Marin, V.Di Stefano
Cluster Reactions in Low Energy Nuclear Reactions (LENRs)
George H. Miley , Heinrich Hora , Andrei Lipson , Hugo Leon , and P. Joshi Shrestha
Microscopic characterization of palladium electrodes for cold fusion experiments
F. Sarto, E. Castagna and V. Violante
Gamma Emission Evaluation in Tungsten Irradiated By Low Energy Deuterium Ions
Irina Savvatimova, Gennady Savvatimov, Alla Kornilova
Transmutation in Tungsten Irradiated By Low Energy Deuterium Ions
Irina Savvatimova
A Review of Experimental studies about Hydrogen over-loading within Palladium wires (H/Pd ≥ 1)
A. Spallone, A. Marmigi , F. Celani, P. Marini, V.Di Stefano
Radiation Produced By Glow Discharge in Deuterium
Edmund Storms and Brian Scanlan
D-Cluster Dynamics and Fusion Rate by Langevin Equation
Akito Takahashi and Norio Yabuuchi
Multiple Resonance Scattering
T. Toimela
Joint Scientific Advances in Condensed Matter Nuclear Science
V. Violante, F. Sarto, E.Castagna, M. McKubre, F. Tanzella, G.Hubler, D. Knies, K.Grabowsk, T. Zilov, I. Dardik, C. Sibilia
Element Analysis of the Surface Layer on the Pd and Pd-Y Alloy after Deuterium Permeation
Wei Qing-Ming, Rao Yong-Chu, Zheng Shao-Tao, Luo De-Li, Li Xing-Zhong
List of Participants 358
Author index 362


Subpage of ISCMNS

ISCMNS Internet Library.

Copyright ISCMNS Nov 26 2017 but you may copy and paste reasonable references into your paper on a ‘fair use’ basis.

Accomazzi P. Binuclear Atoms: A Model to Explain Low Energy Nuclear Reactions, J. Condensed Matter Nucl. Sci. 25, (2017), p 68 www.iscmns.org/CMNS/JCMNS-Vol25.pdf

Adamenko V., Vysotskii V. The Possible Mechanism of Creation of Light Magnetic Monopoles in Strong Magnetic Field of a Laboratory System, Proc. ICCF14 2, (2008), p 484 www.iscmns.org/iccf14/ProcICCF14b.pdf

Adamenko, S. and V. Vysotskii. Experimental Observation And A Possible Way To The Creation Of Anomalous Isotopes And Stable Superheavy Nuclei Via The Electron-Nucleus Collapse, Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/AdamenkoSexperiment.pdf

Adzic R. R., Gervasio D., et al. Investigation Of Phenomena Occurring During D20 Electrolysis At A Palladium Cathode, Proceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 435 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Adzic, R.R., et al. Tritium Measurements and Deuterium Loading in D2O Electrolysis With a Palladium Cathode, Proc. ACCF1 (1990), www.lenr-canr.org/acrobat/AdzicRRtritiummea.pdf

Afonichev, D. Ascending Diffusion Or Transmutation, Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/AfonichevDascendingd.pdf

Afonichev, D. High-Frequency Radiation And Tritium Channel, Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/AfonichevDhighfreque.pdf

Aizawa H., K. Mita K., et al. Detecting Energetic Charged Particles in D2O and H2O Electrolysis Using a Simple Arrangement of Cathode and CR-39, J. Condensed Matter Nucl. Sci. 13, (2014), p 6 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Akita H., Tsuchida Y., et al. Electrolytic Hydrogen /Deuterium Absorption into Pd, Pd-Rh, and Pd-Ag Alloys in Fuel Cell Type Closed Cell, Proc. ICCF4 1, (1993), p 475 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Alexandrov D. Heavy Electrons in Nano-Structure Clusters of Disordered Solids, Proc. ICCF14 2, (2008), p 490 www.iscmns.org/iccf14/ProcICCF14b.pdf

Alguero M., Fernandez J., et al. On the Subsistence of Anomalous Nuclear Effects After Interrupting the Electrolysis in F-P Type Experiments with Deuterated Ti Cathodes, Proc. ICCF4 3, (1993), p 255 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Ambadkar, A., Dash, J. Cluster Fusion: Close But No Cigar, www.lenr-canr.org/acrobat/AmbadkarAelectrolys.pdf

Amini F. Production Method for Violent TCB Jet Plasma from Cavity, Proc. ICCF12 (2005), www.iscmns.org/iccf12/AminiF.pdf

Aoki T., Kurata Y., et al. Study of Concentrations of Helium and Tritium in Electrolytic Cells with Excess Heat Generations, Proc. ICCF4 2, (1993), p 325 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Aoki, T., et al., Search for nuclear products of the D + D nuclear fusion, www.lenr-canr.org/acrobat/AokiTsearchforna.pdf

Apicella, M., et al. Reproducibility of Excess of Power and Evidence of 4He in Palladium Foils Loaded with Deuterium (PowerPoint slides), www.lenr-canr.org/acrobat/ApicellaMreproducib.pdf

Appleby A. J., Kim Y., et al. Anomalous Calorimetric Results During Long-Term Evolution Of Deuterium On Palladium From Alkaline Deuteroxide Electrolyte, Proceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 361 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Appleby, A.J., et al. Anomalous Calorimetric Results During Long-Term Evolution of Deuterium on Palladium from Alkaline Deuteroxide Electrolyte, Proc. ACCF1 (1990), www.lenr-canr.org/acrobat/ApplebyAJanomalousc.pdf

Arapi, A., et al. Experimental observation of the new elements production in the deuterated and/or hydride palladium electrodes, exposed to low energy DC glow discharge, Proc. ICCF9 (2002), www.lenr-canr.org/acrobat/ArapiAexperiment.pdf

Arata Y., Zhang Y. Solid-State Deuterium Nuclear Fusion Using Double structure Cathode, Proc. ICCF12 (2005), www.iscmns.org/iccf12/ArataY.pdf

Arata, Y. and Y. Zhang. Development of Compact Nuclear Fusion Reactor Using Solid Pycnodeuterium as Nuclear Fuel, Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/ArataYdevelopmena.pdf

Arata, Y. and Y.C. Zhang Observation of Anomalous Heat Release and Helium-4 Production from Highly Deuterated Fine Particles, www.lenr-canr.org/acrobat/ArataYobservatio.pdf

Arata, Y. and Y.C. Zhang Formation of Condensed Metallic Deuterium Lattice and Nuclear Fusion, www.lenr-canr.org/acrobat/ArataYformationo.pdf

Arata, Y. and Y.C. Zhang A new energy generated in DS-cathode with ‘Pd-black’, www.lenr-canr.org/acrobat/ArataYanewenergya.pdf

Arata, Y. and Y.C. Zhang Anomalous ‘deuterium-reaction energies’ within solid, www.lenr-canr.org/acrobat/ArataYanomalousd.pdf

Arata, Y. and Y.C. Zhang Anomalous production of gaseous 4He at the inside of ‘DS cathode’ during D2O-electrolysis, www.lenr-canr.org/acrobat/ArataYanomalousp.pdf

Asami T. Study on the Phenomenon Reported ‘Neutron Generation at Room Temperature in a Cylinder Packed with Titanium Shavings and Pressurized Deuterium Gas’, J. Condensed Matter Nucl. Sci. 5, (2011), p 7 www.iscmns.org/CMNS/JCMNS-Vol5.pdf

Asami T., Sano N. Study on the Phenomenon Reported ‘Neutron Generation at Room Temperature in a Cylinder Packed with Titanium Shavings and Pressurized Deuterium Gas’ (2), J. Condensed Matter Nucl. Sci. 9, (2012), p 1 www.iscmns.org/CMNS/JCMNS-Vol9.pdf

Asami T., Giorgi G., et al. Study on the Phenomenon Reported ‘Neutron Generation at Room Temperature in a Cylinder Packed with Titanium Shavings and Pressurized Deuterium Gas’, J. Condensed Matter Nucl. Sci. 18, (2016), p 24 www.iscmns.org/CMNS/JCMNS-Vol18.pdf

Asami, N., et al. Material Behaviour of Highly Deuterium Loaded Palladium by Electrolysis, www.lenr-canr.org/acrobat/AsamiNmaterialbe.pdf

Azizi O., He J., et al. Effect of Cathode Pretreatment and Chemical Additives on H/D Absorption into Palladium via Electrochemical Permeation, J. Condensed Matter Nucl. Sci. 19, (2016), p 1 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Ban M. Tunnel Resonance of Electron Wave and Force of Fluctuation, Proc. ICCF12 (2005), www.iscmns.org/iccf12/BanM.pdf

Baranov D., Bazhutov Y., et al. Experimental Testing of the Erzion Model by Reacting of Electron Flux on the Target, Proc. ICCF4 3, (1993), p 85 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Baranov D., Bazhutov Y., et al. Investigation of the Erzion-Nuclear Transmutation by Ion Beams, Proc. ICCF4 3, (1993), p 211 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Bard A. J. Review Of Calorimetric Data, Proceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 293 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Barnhart, B., et al. Technology Forecast: Worldwide Research on Low-Energy Nuclear Reactions Increasing and Gaining Acceptance, www.lenr-canr.org/acrobat/BarnhartBtechnology.pdf

Barrowes S., Bergeson H. Linear, High-Precision, Redundant Calorimeter, Proc. ICCF4 2, (1993), p 303 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Bartolomeo C., Fleischmann M., et al. Alfred Coehn and After: The Alpha, Beta, Gamma of the Palladium-Hydrogen System, Proc. ICCF4 1, (1993), p 417 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Bass R. Proposed Nuclear Physics Experiment to Conclusively Demonstrate & Explain Aneutronic Cold Fusion, Proc. ICCF4 4, (1993), p 429 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Bass R., Swartz M. Empirical System Identification (ESID) and Optimal Control of Lattice-Assisted Nuclear Reactors, Proc. ICCF14 2, (2008), p 497 www.iscmns.org/iccf14/ProcICCF14b.pdf

Bass, R.W. Five Frozen Needles CF Protocol, www.lenr-canr.org/acrobat/BassRWfivefrozen.pdf

Bass, R.W. Parmenter’s Fundamental Breakthrough Contributions, www.lenr-canr.org/acrobat/BassRWparmenters.pdf

Bass, R.W. Experimental Evidence Favoring Brightsenテュs Nucleon Cluster Model, www.lenr-canr.org/acrobat/BassRWexperiment.pdf

Baym G. Exact Upper Bounds On Barrier Penetration In Media: Solid-State Effects Cannot Enhance Fusion Rates Enough, Proceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 517 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Bazhutov Y., Belousova E.O., et al. Investigation of Radiation Effects in Loading Ni, Be and LaNi5by Hydrogen, J. Condensed Matter Nucl. Sci. 13, (2014), p 19 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Bazhutov Y. Erzion Model Interpretation of the Experiments with Hydrogen Loading of Various Metals, J. Condensed Matter Nucl. Sci. 13, (2014), p 29 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Bazhutov Y., Chertov Y., et al. Excess Heat Observation During Electrolysis of CsCO3 Solution in Light Water, Proc. ICCF4 2, (1993), p 335 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Bazhutov Y., Vereshkov G. A Model of Cold Nuclear Transmutation by the Erzion Catalysis (The Erzion Model of ‘Cold Fusion’), Proc. ICCF4 4, (1993), p 99 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Bazhutov Y. Possible Exhibition of the Erzion Nuclear Transformation in Astrophysics, Proc. ICCF4 4, (1993), p 293 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Bazhutov Y., Kuznetsov A. Isotopic and Chemical Composition Changes in Cold Fusion Experiments in the Erzion Model, Proc. ICCF4 4, (1993), p 295 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Bazhutov Y., Koretsky V., et al. Burning Away of Radioactive and Production of Some Stable Isotopes Within the Framework of the Erzion Mode, Proc. ICCF4 4, (1993), p 299 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Bazhutov Y. N. Erzion Model Features In Cold Nuclear Transmutation Experiments, 8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 12 www.iscmns.org/catania07/ProcW8.pdf

Bazhutov Yu. N., Gerasimova A. I., et al. Calorimetric and Radiation Diagnostics of Water Solutions Under Intense Light Irradiation, J. Condensed Matter Nucl. Sci. 19, (2016), p 10 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Beaudette, C.G. Excess Heat: Why Cold Fusion Research Prevailed, www.lenr-canr.org/acrobat/BeaudetteCexcessheat.pdf

Beaudette, C.G. Response to the DOE/2004 Review of Cold-Fusion Research, www.lenr-canr.org/acrobat/BeaudetteCresponseto.pdf

Benson, T. and T.O. Passell. Calorimetry of Energy-Efficient Glow Discharge – Apparatus Design and Calibration, Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/BensonTcalorimetr.pdf

Bernardini, M., et al. Anomalous Effects Induced by D2O Electrolysis of Titanium, Proc. ICCF8 (2000), www.lenr-canr.org/acrobat/Bernardinianomalouse.pdf

Bernstein L. A. Destruction of Radioactivity by Stimulation of Nuclear Transmutation Reactions, J. Condensed Matter Nucl. Sci. 11, (2013), p 8 www.iscmns.org/CMNS/JCMNS-Vol11.pdf

Bertalot L., De Marco F., et al. Behavior of a Pd Membrane During Deuterium Electrochemical Loading: Excess Heat Production, Proc. ICCF4 1, (1993), p 121 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Bertalot L., DeMarco F., et al. Deuterium Charging in Palladium by the Electrolysis of Heavy Water: Measurement of the Lattice Parameter, Proc. ICCF4 2, (1993), p 397 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Bertalot, L., et al. Analysis of Tritium and Heat Excess in Electrochemical Cells With Pd Cathodes, Proc. ACCF2. SIF Conference Proceedings 33. The Science of Cold Fusion. (1991), www.lenr-canr.org/acrobat/BertalotLanalysisof.pdf

Biberian J. P. Unexplained Explosion During an Electrolysis Experiment in an Open Cell Mass Flow Calorimeter, J. Condensed Matter Nucl. Sci. 2, (2009), p 1 www.iscmns.org/CMNS/JCMNS-Vol2.pdf

Biberian J. P. Biological Transmutations: Historical Perspective, J. Condensed Matter Nucl. Sci. 7, (2012), p 11 www.iscmns.org/CMNS/JCMNS-Vol7.pdf

Biberian J. P., Iraj Parchamazad, et al. Possible Role of Oxides in the Fleischmann鳳ons Effect, J. Condensed Matter Nucl. Sci. 13, (2014), p 38 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Biberian J. P. Cold Fusion, J. Condensed Matter Nucl. Sci. 13, (2014), p 44 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Biberian J. P., Valat M., et al. Pressurized Plasma Electrolysis Experiments, J. Condensed Matter Nucl. Sci. 15, (2015), p 190 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Biberian J. P., Armanet N. Excess Heat Production During Diffusion Of Deuterium Through Palladium Tubes, 8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 19 www.iscmns.org/catania07/ProcW8.pdf

Biberian J. P. Cold Fusion by Gas Loading: A Review, Proc. ICCF14 1, (2008), p 370 www.iscmns.org/iccf14/ProcICCF14a.pdf

Biberian J.P. A Tribute to Georges Lonchampt, J. Condensed Matter Nucl. Sci. 21, (2016), p 1 www.iscmns.org/CMNS/JCMNS-Vol21.pdf

Biberian, J.P. Rapport sur L’International Conference on Cold Fusion ICCF9 Pekin, Chine, 20-24 mai 2002, www.lenr-canr.org/acrobat/BiberianJPrapportsur.pdf

Biberian, J.P. Unexplained Explosion During an Electrolysis Experiment in an Open Cell Mass Flow Calorimeter, www.lenr-canr.org/acrobat/BiberianJPunexplaine.pdf

Biberian, J.P. and G. Lonchampt. Deuterium Gas Loading of Palladium Using a Solid State Electrolyte, Proc. ICCF9 (2002), www.lenr-canr.org/acrobat/BiberianJPdeuteriumg.pdf

Biberian, J.P. and N. Armanet. Excess Heat During Diffusion of Deuterium Through Palladium, Proc. ICCF13 (2007), www.lenr-canr.org/acrobat/BiberianJPexcessheatc.pdf

Biberian, J.P., et al. Electrolysis of LaAlO3 Single Crystals and Ceramics in a Deuteriated Atmosphere, www.lenr-canr.org/acrobat/BiberianJPelectrolys.pdf

Billings Brown Lithium Fission to Fuse Deuterium?, International Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 68 www.iscmns.org/FIC/CFSB.pdf

Bockris J O’M. Evidence Concerning the Mechanism of the Nuclear Reaction between Deuterium and Tritium, J. Condensed Matter Nucl. Sci. 7, (2012), p 26 www.iscmns.org/CMNS/JCMNS-Vol7.pdf

Bockris J O’M. Priority in Nuclear Reactions in the Cold, J. Condensed Matter Nucl. Sci. 7, (2012), p 32 www.iscmns.org/CMNS/JCMNS-Vol7.pdf

Bockris J O’M. Instrumentation Relevant to Electrochemical Measurements in Condensed Matter Nuclear Reactions, J. Condensed Matter Nucl. Sci. 9, (2012), p 10 www.iscmns.org/CMNS/JCMNS-Vol9.pdf

Bockris J. On Martin Fleischmann: An Obituary and More, J. Condensed Matter Nucl. Sci. 11, (2013), p 1 www.iscmns.org/CMNS/JCMNS-Vol11.pdf

Bockris J. Electrochemistry, Anomalous Heat, And Tritium Production, Proceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 187 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Bockris J. O’M., Sundaresan R., et al. Triggering of Heat and Sub-surface Changes in Pd-D Systems, Proc. ICCF4 2, (1993), p 15 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Bockris J.O’M., R. Sundaresan Electrochemistry, Tritium and Transmutation,, International Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 123 www.iscmns.org/FIC/CFSB.pdf

Bockris, J. The History Of The Discovery Of Transmutation At Texas A&M University, Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/BockrisJthehistory.pdf

Bockris, J. Early Contributions from Workers at Texas A&M University to (So-called) Low Energy Nuclear Reactions, www.lenr-canr.org/acrobat/BockrisJearlycontr.pdf

Bockris, J. Accountability and academic freedom: The battle concerning research on cold fusion at Texas A&M University, www.lenr-canr.org/acrobat/BockrisJaccountabi.pdf

Bockris, J. and Z. Minevski Two zones of “Impurities” observed after prolonged electrolysis of deuterium on palladium, www.lenr-canr.org/acrobat/BockrisJtwozonesof.pdf

Bockris, J., et al. Does Tritium Form at Electrodes by Nuclear Reactions?, www.lenr-canr.org/acrobat/BockrisJdoestritiu.pdf

Bok S., Sangho Bok, Mathai C., et al. Fluorescence-based Temperature Sensor for Anomalous Heat from Loaded Palladium Electrodes with Deuterium or Hydrogen, J. Condensed Matter Nucl. Sci. 24, (2017), p 25 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Botta, E., et al. Search for 4He Production from Pd/D2 Systems in Gas Phase, www.lenr-canr.org/acrobat/BottaEsearchforh.pdf

Botta, E., et al. Measurement of 4He Production from D2 Gas-Loaded Pd Samples, www.lenr-canr.org/acrobat/BottaEmeasuremena.pdf

Bottollier-Curtet H., Koberl O., et al. Search for Isotopic Anomalies in Alchemical Silver Coins from the Germanischen National Museum in Nuremberg, J. Condensed Matter Nucl. Sci. 1, (2007), p 148 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Bray J.W. Remarks Made At The NsSF/EPRI Workshop, Proceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 457 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Breed B. Can Established Physical Principles Explain Solid-State Fusion?, Proc. ICCF14 2, (2008), p 503 www.iscmns.org/iccf14/ProcICCF14b.pdf

Bressani, T. Nuclear Physics Aspects of Cold Fusion Experiments, Scientific Summary after ICCF-7, www.lenr-canr.org/acrobat/BressaniTnuclearphy.pdf

Brown J. S. Enhanced Low Energy Fusion Rate in Metal Deuterides Due to Vibrational Deuteron Dipole縫ipole Interactions and Associated Resonant Tunneling Between Neighbouring Sites, J. Condensed Matter Nucl. Sci. 2, (2009), p 45 www.iscmns.org/CMNS/JCMNS-Vol2.pdf

Brown, J. Enhanced low energy fusion rate in metal deuterides due to vibrational deuteron dipole-dipole interactions and associated resonant tunneling between neighbouring sites, www.lenr-canr.org/acrobat/BrownJenhancedlo.pdf

Budko K.P., Korshunov A.I. Calorimetric Investigation of Anomalous Heat Production in Ni蓬 Systems, J. Condensed Matter Nucl. Sci. 23, (2017), p 85 www.iscmns.org/CMNS/JCMNS-Vol23.pdf

Bulyga A.V., A.G. Shashkov The Description of Self-Oscillation Processes of Energy Transfer as a Linear Approximation, International Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 274 www.iscmns.org/FIC/CFSB.pdf

Bush B.F., M.H. Miles Practical Aspects of Heat and Helium Measurements in Deuterated Palladium, International Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 182 www.iscmns.org/FIC/CFSB.pdf

Bush R., Eagleton R. Calorimetric Studies for Several Light Water Electrolytic Cells With Nickel Fibrex Cathodes and Electrolytes with Alkali Salts of Potassium, Rubidium, and Cesium, Proc. ICCF4 2, (1993), p 199 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Bush R., Eagleton R. Evidence for Electrolytically Induced Transmutation and Radioactivity Correlated with Excess Heat in Electrolytic Cells With Light Water Rubidium Salt Electrolytes, Proc. ICCF4 3, (1993), p 27 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Bush R. A Unifying Model for Cold Fusion, Proc. ICCF4 4, (1993), p 187 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Bush, B.F. and J.J. Lagowski. Methods of Generating Excess Heat with the Pons and Fleischmann Effect: Rigorous and Cost Effective Calorimetry, Nuclear Products Analysis of the Cathode and Helium Analysis, www.lenr-canr.org/acrobat/BushBFmethodsofg.pdf

Bush, B.F., et al. Helium production during the electrolysis of D2O in cold fusion experiments, www.lenr-canr.org/acrobat/BushBFheliumprod.pdf

Buxerolle M., Kurkdjian J. An Historical Experiment of Neutron Detection Near an Electrolytic Cell, J. Condensed Matter Nucl. Sci. 21, (2016), p 7 www.iscmns.org/CMNS/JCMNS-Vol21.pdf

Calaon A. Yet Another LENR Theory: Electron-mediated Nuclear Reactions (EMNR), J. Condensed Matter Nucl. Sci. 19, (2016), p 17 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Cammarota, G., Collis W., et al. A flow calorimeter study of the Ni/H system, SIF Conference Proceedings 64. 3rd Asti Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Asti, Italy (1997), www.lenr-canr.org/acrobat/CammarotaGaflowcalor.pdf

Campari, E.G., et al. Overview Of H-Ni Systems: Old Experiments And New Setup, 5th Asti Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Asti, Italy (2004), www.lenr-canr.org/acrobat/CampariEGoverviewof.pdf

Campari, E.G., et al. Photon and particle emission, heat production and surface transformation in Ni-H system, Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/CampariEGphotonandp.pdf

Campari, E.G., et al. Surface Analysis of hydrogen loaded nickel alloys, Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/CampariEGsurfaceana.pdf

Cantwell R., McConnell M. Partial Replication of Storms/Scanlan Glow Discharge Radiation, Proc. ICCF14 1, (2008), p 288 www.iscmns.org/iccf14/ProcICCF14a.pdf

Cardone F., Petrucci A., et al. Piezonuclear Neutrons from Iron, J. Condensed Matter Nucl. Sci. 8, (2012), p 198 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Carpinteri A., Manuello A., et al. Piezonuclear Fission Reactions Simulated by the Lattice Model, J. Condensed Matter Nucl. Sci. 15, (2015), p 149 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Carpinteri A., Borla O., et al. Hydrogen Embrittlement and Piezonuclear Reactions in Electrolysis Experiments, J. Condensed Matter Nucl. Sci. 15, (2015), p 162 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Case, L.C. Catalytic Fusion of Deuterium into Helium-4, www.lenr-canr.org/acrobat/CaseLCcatalyticf.pdf

Castagna E., Lecci, S., et al. Correlation Between Surface Properties and Anomalous Effects in F&P Experiments, J. Condensed Matter Nucl. Sci. 8, (2012), p 49 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Castagna E., Sansovini M., et al. Metallurgical Characterization of Pd Electrodes Employed in CalorimetricExperiments Under Electrochemical Deuterium Loading, Proc. ICCF14 2, (2008), p 444 www.iscmns.org/iccf14/ProcICCF14b.pdf

Castano, C.H., et al. Calorimetric Measurements During Pd-Ni Thin Film-cathodes Electrolysis in Li2SO4/H2O Solution, Proc. ICCF9 (2002), www.lenr-canr.org/acrobat/CastanoCHcalorimetr.pdf

Castellano, et al. Nuclear Transmutation in Deutered Pd Films Irradiated by an UV Laser, Proc. ICCF8 (2000), www.lenr-canr.org/acrobat/Castellanonucleartra.pdf

Cecil, F.E. and G.M. Hale. Measurement of D-D and D-Li6 Nuclear Reactions at Very Low Energies, Proc. ACCF2. SIF Conference Proceedings 33. The Science of Cold Fusion. (1991), www.lenr-canr.org/acrobat/CecilFEmeasuremenb.pdf

Celani F., Calamai O., et al. Development of a High Temperature Hybrid CMNS Reactor, J. Condensed Matter Nucl. Sci. 6, (2012), p 24 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Celani F., Marano E.F., et al. Cu鋒i邦n AlloyWires, with Improved Sub-micrometric Surfaces, J. Condensed Matter Nucl. Sci. 13, (2014), p 56 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Celani F., Spallone A., et al. Observation of Macroscopic Current and Thermal Anomalies, at High Temperature, by Hetero-structures in Thin and Long Constantan Wires Under H2 Gas, J. Condensed Matter Nucl. Sci. 19, (2016), p 29 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Celani, F., et al. Thermal and Isotopic Anomalies when Pd Cathodes are Electrolysed in Electrolytes Containing Th-Hg Salts Dissolved at Micromolar Concentration in C2H5OD/D2O Mixtures, Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/CelaniFthermaland.pdf

Celani, F., et al. Electrochemical D loading of palladium wires by heavy ethyl-alcohol and water electrolyte, related to Ralstonia bacteria problematics, www.lenr-canr.org/acrobat/CelaniFelectrochea.pdf

Celani, F., et al. Evidence of anomalous tritium excess in D/Pd overloading experiments, www.lenr-canr.org/acrobat/CelaniFevidenceofa.pdf

Celani, F., et al. Observations of strong resistivity reduction in a palladium thin long wire using ultra-high frequency pulse electrolysis at D/Pd>1, www.lenr-canr.org/acrobat/CelaniFobservatio.pdf

Celani, F., et al. Unexpected Detection Of New Elements In Electrolytic Experiments With Deuterated Ethyl-Alcohol, Pd Wire, Sr And Hg Salts, www.lenr-canr.org/acrobat/CelaniFunexpected.pdf

Celani, F., et al. Deuterium overloading of palladium wires by means of high power microsecond pulsed electrolysis and electromigration: suggestions of a “phase transition” and related excess heat, www.lenr-canr.org/acrobat/CelaniFdeuteriumo.pdf

Celani, F., et al. Reproducible D/Pd ratio > 1 and excess heat correlation by 1-microsec-pulse, high-current electrolysis, www.lenr-canr.org/acrobat/CelaniFreproducib.pdf

Cellucci, F., et al. X-Ray, Heat Excess and 4He in the Electrochemical Confinement of Deuterium in Palladium, www.lenr-canr.org/acrobat/CellucciFxrayheatex.pdf

Cerron-Zeballos, E., et al. Investigation of anomalous heat production in Ni-H systems, www.lenr-canr.org/acrobat/CerronZebainvestigat.pdf

Chechin, V.A., et al. Critical review of theoretical models for anomalous effects in deuterated metals, www.lenr-canr.org/acrobat/ChechinVAcriticalre.pdf

Chen, S. and X.Z. Li. The Application Of Multiple Scattering Theory (Mst) In Calculating The Deuterium Flux Permeating The Pd Thin Film, Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/ChenStheapplica.pdf

Chen, S. and X.Z. Li. Tritium production and selective resonant tunneling model, www.lenr-canr.org/acrobat/ChenStritiumpro.pdf

Chernov I. P., Koroteev Y. M., et al. Excitation of Hydrogen Subsystem in Metals by External Influence, 8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 27 www.iscmns.org/catania07/ProcW8.pdf

Chicea, D. About Deuterium Nuclear Reaction Rate in Condensed Matter, www.lenr-canr.org/acrobat/ChiceaDaboutdeute.pdf

Chicea, D. The Role of the Energy Fluctuations in the Possibility of Nuclear Reactions in Condensed Matter, www.lenr-canr.org/acrobat/ChiceaDtheroleoft.pdf

Chicea, D. On Current Density and Excess Power Density in Electrolysis Experiments, Proc. ICCF9 (2002), www.lenr-canr.org/acrobat/ChiceaDoncurrentd.pdf

Chicea, D. On New Elements on Cathode Surface after Hydrogen Isotopes Absorption, Proc. ICCF9 (2002), www.lenr-canr.org/acrobat/ChiceaDonneweleme.pdf

Chicea, D. Comment On Carbon Production In Deuterium-Metal Systems, Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/ChiceaDcommentonc.pdf

Chicea, D. Electron Clusters- Possible Deuterium Fusion Catalyzers, www.lenr-canr.org/acrobat/ChiceaDelectroncl.pdf

Chicea, D. and D. Lupu Low-intensity neutron emission from TiDx samples under nonequilibrium conditions, www.lenr-canr.org/acrobat/ChiceaDlowintensi.pdf

Chicea, D. and D. Stoicescu. Experimental Evidence of Nuclear Reactions in Deuterated Titanium Samples Under Non-Equilibrium Conditions Induced by Temperature Variation, Proc. ICCF8 (2000), www.lenr-canr.org/acrobat/ChiceaDexperimenta.pdf

Chien, C.C., et al. On an electrode producing massive quantities of tritium and helium, www.lenr-canr.org/acrobat/ChienCConanelectr.pdf

Choi, E., et al. Search for time-correlated fast neutrons from DD fusion at room temperature, www.lenr-canr.org/acrobat/ChoiEsearchfort.pdf

Choi, E., H. Ejiri, and H. Ohsumi Application of a Ge detector to search for fast neutrons from DD fusion in deuterized Pd, www.lenr-canr.org/acrobat/ChoiEapplicatio.pdf

Christianto V., Umniyati Y., et al. On a Plausible Role of Classical Electromagnetic Theory and Submicroscopic Physics to understand and Enhance Low Energy Nuclear Reaction: A Preliminary Review, J. Condensed Matter Nucl. Sci. 22, (2017), p 27 www.iscmns.org/CMNS/JCMNS-Vol22.pdf

Chuan-Zan Yu, Yi-Fang Chang Internal Conversion Mechanism in Cold Fusion, International Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 119 www.iscmns.org/FIC/CFSB.pdf

Chubb S. Roles of Approximate Symmetry and Finite Size in the Quantum Electrodynamics of d+d -> 4He in Condensed Matter Nuclear Science, 8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 38 www.iscmns.org/catania07/ProcW8.pdf

Chubb S., Chubb T. The Role of Hydrogen Ion Band States in Cold Fusion, Proc. ICCF4 4, (1993), p 117 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Chubb S. Why Particular Nano-Scale PdD Crystals Turn-on Faster, Proc. ICCF12 (2005), www.iscmns.org/iccf12/ChubbS2.pdf

Chubb S. Resonant Electromagnetic-Dynamics Explains the Fleischmann-Pons Effect, Proc. ICCF14 2, (2008), p 521 www.iscmns.org/iccf14/ProcICCF14b.pdf

Chubb S. R. Concerning the Role of Electromagnetism in Low-energy Nuclear Reactions, J. Condensed Matter Nucl. Sci. 4, (2011), p 213 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Chubb S. R., Chubb T. A. Fusion Within A Solid Through Solid State Effects: The Grand Identity Crisis, Proceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 590 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Chubb T. Catalytic Fusion and Interface between Insulators and Transition Metals, Proc. ICCF12 (2005), www.iscmns.org/iccf12/ChubbT.pdf

Chubb T. Interface Model of Cold Fusion, Proc. ICCF14 2, (2008), p 534 www.iscmns.org/iccf14/ProcICCF14b.pdf

Chubb T. A., Chubb S. R. Overcoming the Coulomb Barrier in Cold Fusion, J. Condensed Matter Nucl. Sci. 2, (2009), p 51 www.iscmns.org/CMNS/JCMNS-Vol2.pdf

Chubb T. A., Chubb S. R. Ion Band States: What They Are and How They Affect Cold Fusion, International Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 82 www.iscmns.org/FIC/CFSB.pdf

Chubb, S.R. Impact of Boundary Effects Involving Broken Gauge Symmetry on LENR’s, Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/ChubbSRimpactofbo.pdf

Chubb, S.R. Nuts and Bolts of the Ion Band State Theory, Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf

Chubb, S.R. Framework for Understanding LENR Processes, Using Conventional Condensed Matter Physics, Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/ChubbSRframeworkf.pdf

Chubb, S.R. Introduction to the Special Issue of Accountability in Research Dealing With “Cold Fusion”, www.lenr-canr.org/acrobat/ChubbSRintroducti.pdf

Chubb, S.R. Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions, www.lenr-canr.org/acrobat/ChubbSRresonantel.pdf

Chubb, S.R. and T.A. Chubb. Theoretical Framework for Anomalous Heat and 4He in Transition Metal Systems, Proc. ICCF8 (2000), www.lenr-canr.org/acrobat/ChubbSRtheoretica.pdf

Chubb, S.R. and T.A. Chubb. Relationship between microscopic and macroscopic interactions in low energy nuclear reactions: Lessons learned from D + D = 4He, www.lenr-canr.org/acrobat/ChubbSRrelationsh.pdf

Chubb, T.A. Production of excited surface states by reactant starved electrolysis, Proc. ICCF9 (2002), www.lenr-canr.org/acrobat/ChubbTAproduction.pdf

Chubb, T.A. LENR: Superfluids, Self-Trapping and Non-Self-Trapping States, Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/ChubbTAlenrsuperf.pdf

Chubb, T.A. The dd Cold Fusion-Transmutation Connection, Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/ChubbTAtheddcoldf.pdf

Chubb, T.A. I. Bloch Ions, Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/ChubbTAiblochions.pdf

Chubb, T.A. II. Inhibited Diffusion Driven Surface Transmutations, Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/ChubbTAiiinhibite.pdf

Chubb, T.A. III. Bloch Nuclides, Iwamura Transmutations, and Oriani Showers, Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/ChubbTAiiiblochnu.pdf

Chubb, T.A. D2 Fusion in Ionic Solid + Nanometal Composite (PowerPoint slides), www.lenr-canr.org/acrobat/ChubbTAdfusionini.pdf

Chubb, T.A. Laboratory Evidence Demonstrating d-d Cold Fusion in Metals, www.lenr-canr.org/acrobat/ChubbTAlaboratory.pdf

Chubb, T.A. Modeling the 3He concentration in a Clarke et al. gas sample from an Arata-style cathode, www.lenr-canr.org/acrobat/ChubbTAmodelingth.pdf

Chubb, T.A. Three Types of dd Fusion, www.lenr-canr.org/acrobat/ChubbTAthreetypes.pdf

Chubb, T.A. and S.R. Chubb Overcoming the Coulomb Barrier in Cold Fusion, www.lenr-canr.org/acrobat/ChubbTAovercoming.pdf

Chubb, T.A. and S.R. Chubb Cold fusion as an interaction between ion band states, www.lenr-canr.org/acrobat/ChubbTAcoldfusion.pdf

Chubb, T.A. and S.R. Chubb. The Ion Band State Theory, www.lenr-canr.org/acrobat/ChubbTAtheionband.pdf

Chubb, T.A. and S.R. Chubb. Radiationless Cold Fusion: Why Small “Crystals” Are Better, N(cell) Requirement, and Energy Transfer to Lattice, www.lenr-canr.org/acrobat/ChubbTAradiationl.pdf

Chubb, T.A. and S.R. Chubb. Deuteride-Induced Strong Force Reactions, www.lenr-canr.org/acrobat/ChubbTAdeuteridei.pdf

Chubb, T.A. and S.R. Chubb. Deuteron Fluxing and the Ion Band State Theory, Proc. ICCF8 (2000), www.lenr-canr.org/acrobat/ChubbTAdeuteronfl.pdf

Chukanov K. New Pulse Gas Loading Cold Fusion Technology, Proc. ICCF4 4, (1993), p 397 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Cirillo, D. and V. Iorio. Transmutation of metal at low energy in a confined plasma in water, Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/CirilloDtransmutat.pdf

Cisbani, E., et al. Neutron Detector for CF Experiments, www.lenr-canr.org/acrobat/CisbaniEneutrondet.pdf

Clarke, A.C. 2001: The Coming Age of Hydrogen Power, www.lenr-canr.org/acrobat/ClarkeACthecominga.pdf

Claytor, T.N. Tritium Production from a Low Voltage Deuterium Discharge of Palladium and Other Metals, www.lenr-canr.org/acrobat/ClaytorTNtritiumpro.pdf

Claytor, T.N., D.G. Tuggle, and H.O. Menlove. Tritium Generation and Neutron Measurements in Pd-Si Under High Deuterium Gas Pressure, www.lenr-canr.org/acrobat/ClaytorTNtritiumgen.pdf

Collis W. Oklo isotope anomalies and Cold FusionProc. ICCF4 4, (1993), p 489 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Cook N. Toward an Explanation of Transmutation Products on Palladium CathodesProc. ICCF14 2, (2008), p 540 www.iscmns.org/iccf14/ProcICCF14b.pdf

Cook N. D., Dallacasa V. LENR and Nuclear Structure TheoryJ. Condensed Matter Nucl. Sci. 13, (2014), p 68 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Cook N. D. LENR Theory Requires a Proper Understanding of Nuclear StructureJ. Condensed Matter Nucl. Sci. 24, (2017), p 60 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Corey, J. Trip Report: ICCF11www.lenr-canr.org/acrobat/CoreyJtripreport.pdf

Cornog R. Cheap Electric Power from Fusion?Proc. ICCF4 4, (1993), p 411 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Cravens D. Inhibition of LENR by Hydrogen within Gas-loaded SystemsJ. Condensed Matter Nucl. Sci. 4, (2011), p 282 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Cravens D. Factors Affecting the Success Rate of Heat Generation in CF CellsProc. ICCF4 2, (1993), p 269 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Cravens D., Letts D. The Enabling Criteria of Electrochemical Heat: Beyond Reasonable DoubtProc. ICCF14 1, (2008), p 71 www.iscmns.org/iccf14/ProcICCF14a.pdf

Cravens, D. and D. Letts. Practical Techniques In CF Research – Triggering MethodsProc. ICCF10 (2003), www.lenr-canr.org/acrobat/CravensDpracticalt.pdf

Cravens, D. and D. Letts. Practical Techniques In CF Research – Triggering Methods (PowerPoint slides)Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/CravensDpracticalta.pdf

Criddle E. Evidence of Agglomerization and Syneresis in Regular and Excess Heat Cells in WaterProc. ICCF4 2, (1993), p 423 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Crouch-Baker S., Ferrante, et al. Experiments On Excess Heat Generation Upon Electrochemical Insertion Of Deuterium Into PalladiumProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 395 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

CSST Hearing before the Committee on Science, Space and Technology, U.S. House of Representativeswww.lenr-canr.org/acrobat/CSSThearingbef.pdf

Czerski, K., et al. The 2H(d,p)3H reaction in metallic media at very low energieswww.lenr-canr.org/acrobat/CzerskiKthehdphrea.pdf

Czerski, K., et al. Enhancement of the electron screening effect for d + d fusion reactions in metallic environmentswww.lenr-canr.org/acrobat/CzerskiKenhancemen.pdf

Dairaku, T., et al. Studies of nuclear-reactions-in-solid in titanium deuteride under ion implantationwww.lenr-canr.org/acrobat/DairakuTstudiesofn.pdf

Dardik I., Zilov T., et al. Ultrasonically-Excited Electrolysis Experiments at Energetics TechnologiesProc. ICCF14 1, (2008), p 106 www.iscmns.org/iccf14/ProcICCF14a.pdf

Dardik, I., et al. Intensification Of Low Energy Nuclear Reactions Using Superwave ExcitationProc. ICCF10 (2003), www.lenr-canr.org/acrobat/DardikIintensific.pdf

Dardik, I., et al. Excess heat in electrolysis experiments at Energetics Technologies (PowerPoint slides)Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/DardikIexcessheat.pdf

Dash J., Solomon J., et al. Effect of Recrystallization on Heat Output and Surface Composition of Ti and Pd CathodesJ. Condensed Matter Nucl. Sci. 13, (2014), p 80 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Dash J., Noble G., et al. Surface Morphology and Microcomposition of Palladium Cathodes After Electrolysis in Acidified Light and Heavy Water: Correlation with Excess Heat:Proc. ICCF4 2, (1993), p 339 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Dash J. Seebeck Envelope Calorimetry with a Pd/D2O+H2SO4 Electrolytic CellProc. ICCF12 (2005), www.iscmns.org/iccf12/Dash2.pdf

Dash J., Wang Q. Effect of an Additive on Thermal Output during Electrolysis of Heavy Water with a Palladium CathodeProc. ICCF12 (2005), www.iscmns.org/iccf12/Dash1.pdf

Dash J., Noble G., et al. Changes in Surface Topography and Microcomposition of a Palladium Cathode Cused by Electrolysis in Acidified Light WaterInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 202 www.iscmns.org/FIC/CFSB.pdf

Dash, J. and A. Ambadkar. Co-Deposition Of Palladium With Hydrogen IsotopesProc. ICCF11 (2004), www.lenr-canr.org/acrobat/DashJcodepositi.pdf

Dash, J. and D. Chicea. Changes In The Radioactivity, Topography, And Surface Composition Of Uranium After Hydrogen Loading By Aqueous ElectrolysisProc. ICCF10 (2003), www.lenr-canr.org/acrobat/DashJchangesint.pdf

Dash, J. and D.S. Silver. Surface Studies After Loading Metals With Hydrogen And/Or DeuteriumProc. ICCF13 (2007), www.lenr-canr.org/acrobat/DashJsurfacestu.pdf

Dash, J. and S. Miguet Microanalysis of Pd Cathodes after Electrolysis in Aqueous Acidswww.lenr-canr.org/acrobat/DashJmicroanaly.pdf

Dash, J., A. Ambadkar, and Q. Wang. ICCF11 Tutorial – Search for optimum conditions to produce excess heat from the electrolysis of heavy water with a palladium cathode (PowerPoint slides)Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/DashJiccftutori.pdf

Dash, J., C. Lee, and S. Pedersen The Quest for Excesswww.lenr-canr.org/acrobat/DashJthequestfo.pdf

Dash, J., et al. Effects of Glow Discharge with Hydrogen Isotope Plasmas on Radioactivity of UraniumProc. ICCF9 (2002), www.lenr-canr.org/acrobat/DashJeffectsofg.pdf

Dash, J., J. Freeman, and B. Zimmermann Cold Fusion Research – Low Energy Nuclear Reactionswww.lenr-canr.org/acrobat/DashJcoldfusion.pdf

Dash, J., R. Kopecek, and S. Miguet. Excess Heat and Unexpected Elements from Aqueous Electrolysis with Titanium and Palladium Cathodeswww.lenr-canr.org/acrobat/DashJexcessheat.pdf

Davidson M. Off-mass-shell Particles and LENRJ. Condensed Matter Nucl. Sci. 19, (2016), p 46 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

de Guerville F. Proton Conductors: Nanometric Cavities, H2 Precipitates under Pressure, and Rydberg Matter FormationJ. Condensed Matter Nucl. Sci. 21, (2016), p 26 www.iscmns.org/CMNS/JCMNS-Vol21.pdf

De Ninno A. Dynamics in Pd蓬(D) SystemsJ. Condensed Matter Nucl. Sci. 4, (2011), p 291 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

De Ninno, A., et al. Cold Fusion at ENEA Frascati: Progress Reportwww.lenr-canr.org/acrobat/DeNinnoAcoldfusion.pdf

De Ninno, A., et al. 4He Detection In A Cold Fusion ExperimentProc. ICCF10 (2003), www.lenr-canr.org/acrobat/DeNinnoAhedetectio.pdf

De Ninno, A., et al. Experimental Evidence of 4He Production in a Cold Fusion Experimentwww.lenr-canr.org/acrobat/DeNinnoAexperiment.pdf

DeChiaro L. F., Forsley L. P., et al. Strained Layer Ferromagnetism in Transition Metals and its Impact Upon Low Energy Nuclear ReactionsJ. Condensed Matter Nucl. Sci. 17, (2015), p 1 www.iscmns.org/CMNS/JCMNS-Vol17.pdf

Del Giudice, E. and A. De Ninno. Are Nuclear Transmutations Observed At Low Energies Consequences Of Qed Coherence?www.lenr-canr.org/acrobat/DelGiudicearenuclear.pdf

Del Giudice, E., et al. Loading of H(D) in a Pd latticeProc. ICCF9 (2002), www.lenr-canr.org/acrobat/DelGiudiceloadingofh.pdf

Del Giudice, E., et al. Production of excess enthalpy in the electrolysis of D2O on Pd cathodeswww.lenr-canr.org/acrobat/DelGiudiceproduction.pdf

Didyk A. Yu., Wisniewski R. Changes Observed in the Elemental Composition of Palladium and Rhenium Specimens Irradiated in Dense Deuterium by gamma quanta with Boundary of Energy 23 MeVJ. Condensed Matter Nucl. Sci. 13, (2014), p 89 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Dmitriyeva O., Cantwell R., et al. Mechanisms for Heat Generation during Deuterium and Hydrogen Loading of Palladium NanostructuresJ. Condensed Matter Nucl. Sci. 8, (2012), p 29 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Dmitriyeva O., Cantwell R., et al. Using Bakeout to Eliminate Heat from H/D Exchange During Hydrogen Isotope Loading of Pd-impregnated Alumina PowderJ. Condensed Matter Nucl. Sci. 12, (2013), p 13 www.iscmns.org/CMNS/JCMNS-Vol12.pdf

Dmitriyeva O., Cantwell R., et al. Measurement Artifacts in Gas-loading ExperimentsJ. Condensed Matter Nucl. Sci. 13, (2014), p 106 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Dmitriyeva O., Cantwell R., et al. Numerical Modeling of H2 Molecule Formation within Near-surface Voids in Pd and NiJ. Condensed Matter Nucl. Sci. 15, (2015), p 195 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

DOE 2004 U.S. Department of Energy Cold Fusion Review Reviewer Commentswww.lenr-canr.org/acrobat/DOEusdepartme.pdf

DOE Report of the Review of Low Energy Nuclear Reactionswww.lenr-canr.org/acrobat/DOEreportofth.pdf

Dolan, T.J. An outsider’s view of cold fusionProc. ICCF9 (2002), www.lenr-canr.org/acrobat/DolanTJanoutsider.pdf

Dolan, T.J. Notes from the 12th International Conference on Condensed Matter Nuclear Scienceswww.lenr-canr.org/acrobat/DolanTJnotesfromt.pdf

Dominguez D. D., Kidwell D. A., et al. Are Oxide Interfaces Necessary in Fleischmann鳳ons-type Experiments?J. Condensed Matter Nucl. Sci. 8, (2012), p 219 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Dominguez D. D., Moser A. E., et al. Evidence for Excess Energy in Fleischmann鳳ons-Type Electrochemical ExperimentsJ. Condensed Matter Nucl. Sci. 14, (2014), p 15 www.iscmns.org/CMNS/JCMNS-Vol14.pdf

Dominguez, D.D., P.L. Hagans, and M.A. Imam. The effect of microstructure on deuterium loading in palladium cathodeswww.lenr-canr.org/acrobat/DominguezDtheeffecto.pdf

Dong Z. M., Liang C. L., et al. Studies on Anomalous Phenomena of D/Pd Systems using a Gas-loading Process � A Stride Towards Neutrino DetectionJ. Condensed Matter Nucl. Sci. 4, (2011), p 119 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Driscoll J., Horton M., et al. Issues Related to Reproducibility in a CMNS ExperimentJ. Condensed Matter Nucl. Sci. 5, (2011), p 34 www.iscmns.org/CMNS/JCMNS-Vol5.pdf

Dubinko V., Laptev D., et al. Catalytic Mechanism of LENR in Quasicrystals based on Localized Anharmonic Vibrations and PhasonsJ. Condensed Matter Nucl. Sci. 24, (2017), p 75 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Dubinko V. I. Low-energy Nuclear Reactions Driven by Discrete BreathersJ. Condensed Matter Nucl. Sci. 14, (2014), p 87 www.iscmns.org/CMNS/JCMNS-Vol14.pdf

Dubinko V. I. Quantum Tunneling in Breather 鮮ano-colliders�J. Condensed Matter Nucl. Sci. 19, (2016), p 56 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Dubinko V. I. Nuclear Catalysis Mediated by Localized Anharmonic VibrationsJ. Condensed Matter Nucl. Sci. 23, (2017), p 45 www.iscmns.org/CMNS/JCMNS-Vol23.pdf

Dufour J. Very Sizeable Increase of Gravitation at Picometer Distance: A Novel Working Hypothesis.J. Condensed Matter Nucl. Sci. 1, (2007), p 47 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Dufour J. Nuclear Signatures to be Expected from Rossi Energy AmplifierJ. Condensed Matter Nucl. Sci. 8, (2012), p 124 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Dufour J. An Introduction to the Pico-chemistry Working HypothesisJ. Condensed Matter Nucl. Sci. 10, (2013), p 40 www.iscmns.org/CMNS/JCMNS-Vol10.pdf

Dufour J., Foos J., et al. Synthesis of a Copper Like Compound From Nickel and Hydrogen and of a Chromium Like Compound From Calcium and Deuterium8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy.(2007), p 50 www.iscmns.org/catania07/ProcW8.pdf

Dufour J., Foos J., et al. Cold Fusion by Sparking in Hydrogen Isotopes. Energy Balances and Search for Fusion By-products. A Strategy to Prove the Reality of Cold Fusion.Proc. ICCF4 1, (1993), p 207 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Dufour J., Dufour X., et al. A Simple Calorimetric Method to Avoid Artifacts in a Controversial Field: The Ice CalorimeterProc. ICCF14 1, (2008), p 60 www.iscmns.org/iccf14/ProcICCF14a.pdf

Dufour J., Dufour X., et al. An Experimental Device to Test the YPCP (‘Yukawa Pico Chemistry And Physics’) Model: Implications for the CF-LENR FieldProc. ICCF14 2, (2008), p 546 www.iscmns.org/iccf14/ProcICCF14b.pdf

Dufour, J., et al. Experimental observation of nuclear reactions in palladium and uranium — possible explanation by hydrex modewww.lenr-canr.org/acrobat/DufourJexperiment.pdf

Dufour, J., et al. Hydrogen triggered exothermic reaction in uranium metalwww.lenr-canr.org/acrobat/DufourJhydrogentr.pdf

Dufour, J., J. Foos, and J.P. Millot. Measurement of Excess Energy and Isotope Formation in the Palladium-Hydrogen Systemwww.lenr-canr.org/acrobat/DufourJmeasuremen.pdf

Durachenko A.M., E.Ya. Malinochka Element-Phase Transitions with the Cold Nuclear Synthesis Type Reaction in Metallic Alloys of Glass-Forming SystemsInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 215 www.iscmns.org/FIC/CFSB.pdf

El-Boher A., Isaacson, W., et al. Final Report on Calorimetry-based Excess Heat Trials using Celani Treated NiCuMn (Constantan) WiresJ. Condensed Matter Nucl. Sci. 19, (2016), p 68 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

ENEA, Mahaffey, J. A. An investigation of reports of fusion reactions occurring at the cathode in glow dischargeswww.lenr-canr.org/acrobat/ENEAabstracts.pdf

Engvild, K.C. and L. Kowalski. Triple Deuterium Fusion Between Deuterons And The Nuclei Of Lattice Trapped Deuterium MoleculesProc. ICCF10 (2003), www.lenr-canr.org/acrobat/EngvildKCtripledeut.pdf

EPRI. Proceedings: Fourth International Conference on Cold Fusion Volume 1: Plenary Session Papers, TR-104188-V1www.lenr-canr.org/acrobat/EPRIproceeding.pdf

EPRI. Proceedings: Fourth International Conference on Cold Fusion Volume 2: Calorimetry and Materials Papers, TR-104188-V2www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

EPRI. Proceedings: Fourth International Conference on Cold Fusion Volume 3: Nuclear Measurements Papers, TR-104188-V3www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

EPRI. Proceedings: Fourth International Conference on Cold Fusion Volume 4: Theory and Special Topics Papers, TR-104188-V4www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

ERAB Report of the Cold Fusion Panel to the Energy Research Advisory Boardwww.lenr-canr.org/acrobat/ERABreportofth.pdf

Esko E. Anomalous Metals in Electrified VacuumJ. Condensed Matter Nucl. Sci. 13, (2014), p 114 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Evans A. B. 4-Space Dirac Theory and LENRJ. Condensed Matter Nucl. Sci. 2, (2009), p 7 www.iscmns.org/CMNS/JCMNS-Vol2.pdf

Evans, A.B. 4-Space Dirac Theory and LENRwww.lenr-canr.org/acrobat/EvansABspacedirac.pdf

F. Celani et al., P. Marini, V. Di Stefano, D/Pd Loading Ratio up to 1.2:1 by High Power 誑 Pulsed Electrolysis in Pd PlatesInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 197 www.iscmns.org/FIC/CFSB.pdf

Federovich G. Ferroelectrics for Cold FusionProc. ICCF4 4, (1993), p 323 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Fernandez J., Cuevas F., et al. The Cubic-Tetragonal Phase Transition in TiDx, (x> or =1.7) and its Possible Relation to Cold Fusion ReactionsProc. ICCF4 3, (1993), p 121 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Filimonov V. Synergetic Activation Model: Key to Intense and Reproducible Cold FusionProc. ICCF4 4, (1993), p 303 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Filippov, D., A. Rukhadze, and L.I. Urutshoev. Effects of atomic electrons on nuclear stability and radioactive decayProc. ICCF11 (2004), www.lenr-canr.org/acrobat/FilippovDeffectsofa.pdf

Fisher J. Neutron Isotope Theory of LENR ProcessesJ. Condensed Matter Nucl. Sci. 15, (2015), p 183 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Fisher J. External Radiation Produced by Electrolysis � A Work in Progress8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 62 www.iscmns.org/catania07/ProcW8.pdf

Fisher J. Outline Of Polyneutron Theory8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 70 www.iscmns.org/catania07/ProcW8.pdf

Fisher J. C. Palladium Fusion Triggered by PolyneutronsJ. Condensed Matter Nucl. Sci. 1, (2007), p 1 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Fisher J. C. Neutron Isotope ReactionsProc. ICCF12 (2005), www.iscmns.org/iccf12/FisherJ.pdf

Fisher, J.C. Theory of Low-Temperature Particle ShowersProc. ICCF10 (2003), www.lenr-canr.org/acrobat/FisherJCtheoryoflo.pdf

Flanagan T. B. The Palladium-Hydrogen SystemProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 91 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Fleischmann M., Pons S. Calorimetry Of The Palladium-D-D2O SystemProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 39 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Fleischmann M., Pons S., et al. Calorimetry of the Pd-D20 System: The Search for Simplicity and AccuracyProc. ICCF4 1, (1993), p 23 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Fleischmann M., Pons S. Heat After DeathProc. ICCF4 2, (1993), p 107 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Fleischmann, M. Cold Fusion; Past, Present & Futurewww.lenr-canr.org/acrobat/Fleischmancoldfusion.pdf

Fleischmann, M. Searching for the consequences of many-body effects in condensed phase systemsProc. ICCF9 (2002), www.lenr-canr.org/acrobat/Fleischmansearchingf.pdf

Fleischmann, M. Background to Cold Fusion: the Genesis of a ConceptProc. ICCF10 (2003), www.lenr-canr.org/acrobat/Fleischmanbackground.pdf

Fleischmann, M. Reflections on the Sociology of Science and Social Responsibility in Science, in Relationship to Cold Fusionwww.lenr-canr.org/acrobat/Fleischmanreflection.pdf

Fleischmann, M. and M. Miles. The “Instrument Function” of Isoperibolic Calorimeters; Excess Enthalpy Generation due to the Parasitic Reduction of Oxygenwww.lenr-canr.org/acrobat/Fleischmantheinstrum.pdf

Fleischmann, M. and S. Pons Reply to the critique by Morrison entitled ‘Comments on claims of excess enthalpy by Fleischmann and Pons using simple cells made to boilwww.lenr-canr.org/acrobat/Fleischmanreplytothe.pdf

Fleischmann, M. and S. Pons. Calorimetry of the Pd-D2O System: from Simplicity via Complications to Simplicitywww.lenr-canr.org/acrobat/Fleischmancalorimetra.pdf

Fleischmann, M., et al. Calorimetry of the palladium-deuterium-heavy water systemwww.lenr-canr.org/acrobat/Fleischmancalorimetr.pdf

Fleischmann, M., S. Pons, and G. Preparata Possible theories of cold fusionwww.lenr-canr.org/acrobat/Fleischmanpossibleth.pdf

Fleischmann, M., S. Pons, and M. Hawkins Electrochemically induced nuclear fusion of deuteriumwww.lenr-canr.org/acrobat/Fleischmanelectroche.pdf

Focardi, S., et al. Evidence of electromagnetic radiation from Ni-H SystemsProc. ICCF11 (2004), www.lenr-canr.org/acrobat/FocardiSevidenceof.pdf

Focardi, S., et al. Large excess heat production in Ni-H systemswww.lenr-canr.org/acrobat/FocardiSlargeexces.pdf

Fou C. Investigation of Deuteron-Deuteron Cold Fusion in a CavityProc. ICCF14 2, (2008), p 553 www.iscmns.org/iccf14/ProcICCF14b.pdf

Fox H. Cold Nuclear Fusion & Enhanced Energy Devices: A Progress ReportProc. ICCF4 4, (1993), p 351 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Fox Hal Cold Nuclear Fusion, Space Energy Devices and CommercializationInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 13 www.iscmns.org/FIC/CFSB.pdf

Fralick, G.C., A.J. Decker, and J.W. Blue Results Of An Attempt To Measure Increased Rates Of The Reaction 2D + 2D –> 3He + n In A Nonelectrochemical Cold Fusion Experimentwww.lenr-canr.org/acrobat/FralickGCresultsofa.pdf

Frattolillo, A., A. De Ninno, and A. Rizzo. Experimental techniques for detecting small quantities of 4He gas: problems and solutionswww.lenr-canr.org/acrobat/Frattolillexperiment.pdf

Fredericks K. A. Possibility of Tachyon Monopoles Detected in Photographic EmulsionsJ. Condensed Matter Nucl. Sci. 15, (2015), p 203 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

French D. J. Patents and Cold FusionJ. Condensed Matter Nucl. Sci. 13, (2014), p 118 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Frisone F. Tunneling Effect Enhanced by Lattice Screening as Main Cold Fusion Mechanism: A Brief Theoretical OverviewJ. Condensed Matter Nucl. Sci. 1, (2007), p 16 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Frisone F. Nuclear Reactions in Condensed Matter: A Theoretical Study of D縫 Reaction within Palladium Lattice by Means of the Coherence Theory of MatterJ. Condensed Matter Nucl. Sci. 1, (2007), p 27 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Frisone F. Calculation of Deuteron Interactions within Microcracks of a D2 Loaded Crystalline Lattice at Room TemperatureJ. Condensed Matter Nucl. Sci. 1, (2007), p 41 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Frisone F. Nuclear Exothermic Reactions in Lattices Pd: A Theoretical Study of d謀 ReactionJ. Condensed Matter Nucl. Sci. 8, (2012), p 1 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Frisone F. Nuclear Exothermic Reactions in Lattices: A Theoretical Study of D縫 ReactionJ. Condensed Matter Nucl. Sci. 17, (2015), p 27 www.iscmns.org/CMNS/JCMNS-Vol17.pdf

Frisone F. ‘The Coulomb Barrier not Static in QED’ A correction to the Theory by Preparata on the Phenomenon of Cold Fusion and Theoretical HypothesisProc. ICCF14 2, (2008), p 556 www.iscmns.org/iccf14/ProcICCF14b.pdf

Fujii, M., et al. Heat measurement during light water electrolysis using Pd/Ni rod cathodeswww.lenr-canr.org/acrobat/FujiiMheatmeasur.pdf

Fulvio F. Theoretical Hypothesis of a Double Barrier Regarding the D-D Interaction in a Pd Lattice: A Possible Explanation of Cold Fusion Experiment Failures8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy.(2007), p 94 www.iscmns.org/catania07/ProcW8.pdf

G.H. Miley, E.G. Batyrbekov, H. Hora, J.U. Patel, J.W. Tompkins, R.K. Zich Energy Amplifier with Multi-Layer Thin-Film ElectrodesInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 178 www.iscmns.org/FIC/CFSB.pdf

Gamberale, L., D. Garbelli, and G. Piana. Measurement of heat capacity of PdHxProc. ICCF9 (2002), www.lenr-canr.org/acrobat/GamberaleLmeasuremen.pdf

Gao J., Zhang W., et al. Effects of D/Pd Ratio and Cathode Pretreatments on Excess Heat in Closed Pd|D2O+D2SO4 Electrolytic CellsJ. Condensed Matter Nucl. Sci. 24, (2017), p 42 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Gareev F. A., Zhidkova I.I., et al. Common Mechanism of Superconductivity, Superfluidity, Integer and Fractional Hall Effects, and Cold Fusion8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 113 www.iscmns.org/catania07/ProcW8.pdf

Gareev F. A., Zhidkova I.I., et al. Quantization of Atomic and Nuclear Rest Masses8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 129 www.iscmns.org/catania07/ProcW8.pdf

Gareev F. A., Zhidkova I.E. Stimulation Mechanisms of Low Energy Nuclear Reactions Using Superlow Energy External FieldsProc. ICCF12 (2005), www.iscmns.org/iccf12/GareevF.pdf

George, R. The cold fusion phenomenon — An interview with Dr. Mahadeva Srinivasanwww.lenr-canr.org/acrobat/GeorgeRthecoldfus.pdf

Gerischer, H. Is Cold Fusion a Reality? The Impressions of a Critical ObserverProc. ACCF2. SIF Conference Proceedings 33. The Science of Cold Fusion. (1991), www.lenr-canr.org/acrobat/GerischerHiscoldfusi.pdf

Gluck, P. Understanding Reproducibility: Topology Is The Keywww.lenr-canr.org/acrobat/GluckPunderstand.pdf

Godes R., George R., et al. Controlled Electron Capture and the Path toward CommercializationJ. Condensed Matter Nucl. Sci. 13, (2014), p 127 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Godes R. Quantum Fusion HypothesisProc. ICCF14 2, (2008), p 573 www.iscmns.org/iccf14/ProcICCF14b.pdf

Goncharov A. Theoretical Modelling of Electron Flow Action on Probability of Nuclear Fusion of DeuteronsProc. ICCF12 (2005), www.iscmns.org/iccf12/GoncharovA.pdf

Goodstein, D. Whatever Happened to Cold Fusion?www.lenr-canr.org/acrobat/GoodsteinDwhateverha.pdf

Goryachev, I.V. Abnormal results of experimenting with excited substances and interpretation of the discovered effects within the frames of the model of collective interactionsProc. ICCF9 (2002), www.lenr-canr.org/acrobat/GoryachevIabnormalre.pdf

Goryachev, I.V. Registration of synthesis of 45Rh102 in media of excited nuclei of 28Ni58www.lenr-canr.org/acrobat/GoryachevIregistrati.pdf

Goryachev, I.V. and Y. Bazhutov. Organization, current status and main results of Russian research in cold fusion and transmutation of chemical elementswww.lenr-canr.org/acrobat/GoryachevIorganizati.pdf

Gozzi D., Caputo R., et al. Excess Heat and Nuclear Product Measurements in Cold Fusion Electrochemical CellsProc. ICCF4 1, (1993), p 59 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Gozzi D., Caputo R., et al. Helium-4 Quantitative Measurements in the Gas Phase of Cold Fusion Electrochemical CellsProc. ICCF4 1, (1993), p 155 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Gozzi, D., et al. X-ray, heat excess and 4He in the D/Pd systemwww.lenr-canr.org/acrobat/GozziDxrayheatex.pdf

Grabowski, K.S., et al. Evaluation of the Claim of Transmutation of Cesium to Praseodymium with the Mitsubishi Heavy Industries (MHI) Structure — Part 1 (PowerPoint slides)Proc. ICCF15 (2009), www.lenr-canr.org/acrobat/GrabowskiKevaluation.pdf

Griggs J. A Brief Introduction to the Hydrosonic Pump and the Associated Excess Energy PhenomenonProc. ICCF4 4, (1993), p 493 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Grimshaw T. W. Integrated Policymaking for Realizing Benefits and Mitigating Impacts of LENRJ. Condensed Matter Nucl. Sci. 19, (2016), p 88 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Grimshaw, T. Public Interest and Level-of-Evidence Considerations in Cold Fusion Public Policy (PowerPoint slides)www.lenr-canr.org/acrobat/GrimshawTpublicinte.pdf

Guokas J. Cold Fusion and Nuclear ProliferationProc. ICCF4 4, (1993), p 461 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Guruswamy S., Byrne J. G., et al. Metallurgical Aspects Of The Electrochemical Loading Of Palladium With DeuteriumProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 337 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Guruswamy, S. and M.E. Wadsworth. Metallurgical Aspects in Cold Fusion ExperimentsProc. ACCF1 (1990), www.lenr-canr.org/acrobat/GuruswamySmetallurgi.pdf

Hagans, P.L., D.D. Dominguez, and M.A. Imam. Surface composition of Pd cathodeswww.lenr-canr.org/acrobat/HagansPLsurfacecom.pdf

Hagelstein P., Chaudhary I. U. Energy Exchange Using Spin-Boson Models with Infinite LossJ. Condensed Matter Nucl. Sci. 4, (2011), p 202 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Hagelstein P., Chaudhary I. Energy Exchange In The Lossy Spin-Boson ModelJ. Condensed Matter Nucl. Sci. 5, (2011), p 52 www.iscmns.org/CMNS/JCMNS-Vol5.pdf

Hagelstein P., Chaudhary I. Dynamics in the Case of Coupled Degenerate StatesJ. Condensed Matter Nucl. Sci. 5, (2011), p 72 www.iscmns.org/CMNS/JCMNS-Vol5.pdf

Hagelstein P., Chaudhary I. Second-order Formulation and Scaling in the Lossy Spin烹oson ModelJ. Condensed Matter Nucl. Sci. 5, (2011), p 87 www.iscmns.org/CMNS/JCMNS-Vol5.pdf

Hagelstein P., Chaudhary I. Local Approximation for the Lossy Spin肪oson ModelJ. Condensed Matter Nucl. Sci. 5, (2011), p 102 www.iscmns.org/CMNS/JCMNS-Vol5.pdf

Hagelstein P., Chaudhary I. Coherent Energy Exchange in the Strong Coupling Limit of the Lossy Spin烹oson ModelJ. Condensed Matter Nucl. Sci. 5, (2011), p 116 www.iscmns.org/CMNS/JCMNS-Vol5.pdf

Hagelstein P., Chaudhary I. Generalization of the Lossy Spin烹oson Model to Donor and Receiver SystemsJ. Condensed Matter Nucl. Sci. 5, (2011), p 140 www.iscmns.org/CMNS/JCMNS-Vol5.pdf

Hagelstein P., Chaudhary I. Errata and Comments on a Recent Set of Papers in Journal of Condensed Matter in Nuclear ScienceJ. Condensed Matter Nucl. Sci. 7, (2012), p 1 www.iscmns.org/CMNS/JCMNS-Vol7.pdf

Hagelstein P., Chaudhary I. Including Nuclear Degrees of Freedom in a Lattice HamiltonianJ. Condensed Matter Nucl. Sci. 7, (2012), p 35 www.iscmns.org/CMNS/JCMNS-Vol7.pdf

Hagelstein P., Chaudhary I. Pulse and Amplitude Approximation for the Lossy Spin烹oson ModelJ. Condensed Matter Nucl. Sci. 9, (2012), p 30 www.iscmns.org/CMNS/JCMNS-Vol9.pdf

Hagelstein P., Chaudhary I. Coupling between a Deuteron and a LatticeJ. Condensed Matter Nucl. Sci. 9, (2012), p 50 www.iscmns.org/CMNS/JCMNS-Vol9.pdf

Hagelstein P., Chaudhary I. U. Born飽ppenheimer and Fixed-point Models for Second-order Phonon Exchange in a MetalJ. Condensed Matter Nucl. Sci. 12, (2013), p 69 www.iscmns.org/CMNS/JCMNS-Vol12.pdf

Hagelstein P., Chaudhary I. U. Phonon墨uclear Coupling for Anomalies in Condensed Matter Nuclear ScienceJ. Condensed Matter Nucl. Sci. 12, (2013), p 105 www.iscmns.org/CMNS/JCMNS-Vol12.pdf

Hagelstein P., Kaushik S. Neutron Transfer ReactionsProc. ICCF4 1, (1993), p 221 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Hagelstein P. Lattice-Induced Atomic and Nuclear ReactionsProc. ICCF4 1, (1993), p 251 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Hagelstein P. Phonon-exchange models for anomalies in condensed matter systems with molecular deuteriumProc. ICCF12 (2005), www.iscmns.org/iccf12/ChubbS2.pdf

Hagelstein P., Chaudhary I. Excitation Transfer and Energy Exchange Processes for Modeling The Fleischmann-Pons Excess Heat EffectProc. ICCF14 2, (2008), p 579 www.iscmns.org/iccf14/ProcICCF14b.pdf

Hagelstein P., Melich M., et al. Input to Theory from Experiment in the Fleischmann-Pons EffectProc. ICCF14 2, (2008), p 586 www.iscmns.org/iccf14/ProcICCF14b.pdf

Hagelstein P., Chaudhary I. A Theoretical Formulation for Problems in Condensed Matter Nuclear ScienceProc. ICCF14 2, (2008), p 596 www.iscmns.org/iccf14/ProcICCF14b.pdf

Hagelstein P. I., Swartz M. R. Transient Vacancy Phase States in Palladium after High Dose-rate Electron Beam IrradiationJ. Condensed Matter Nucl. Sci. 14, (2014), p 50 www.iscmns.org/CMNS/JCMNS-Vol14.pdf

Hagelstein P. L. Simple Parameterizations of the Deuteron優euteron Fusion Cross SectionsJ. Condensed Matter Nucl. Sci. 3, (2010), p 31 www.iscmns.org/CMNS/JCMNS-Vol3.pdf

Hagelstein P. L. Neutron Yield for Energetic Deuterons in PdD and in D2J. Condensed Matter Nucl. Sci. 3, (2010), p 35 www.iscmns.org/CMNS/JCMNS-Vol3.pdf

Hagelstein P. L. Secondary Neutron Yield in the Presence of Energetic Alpha Particles in PdDJ. Condensed Matter Nucl. Sci. 3, (2010), p 41 www.iscmns.org/CMNS/JCMNS-Vol3.pdf

Hagelstein P. L. On the connection between Ka X-rays and energetic alpha particles in Fleischmann鳳ons experimentsJ. Condensed Matter Nucl. Sci. 3, (2010), p 50 www.iscmns.org/CMNS/JCMNS-Vol3.pdf

Hagelstein P. L., Letts D., et al. Terahertz Difference Frequency Response of PdD in Two-laser ExperimentsJ. Condensed Matter Nucl. Sci. 3, (2010), p 59 www.iscmns.org/CMNS/JCMNS-Vol3.pdf

Hagelstein P. L., Letts D. Analysis of some experimental data from the two-laser experimentJ. Condensed Matter Nucl. Sci. 3, (2010), p 77 www.iscmns.org/CMNS/JCMNS-Vol3.pdf

Hagelstein P. L. Bird痴 EyeView of Phonon Models for Excess Heat in the Fleischmann鳳ons ExperimentJ. Condensed Matter Nucl. Sci. 6, (2012), p 169 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Hagelstein P. L., Chaudhary I. U. Central and Tensor Contributions to the Phonon-exchange Matrix Element for the D2/4He TransitionJ. Condensed Matter Nucl. Sci. 11, (2013), p 15 www.iscmns.org/CMNS/JCMNS-Vol11.pdf

Hagelstein P. L., Chaudhary I. U. Lossy Spin肪oson Model with an Unstable Upper State and Extension to N-level SystemsJ. Condensed Matter Nucl. Sci. 11, (2013), p 59 www.iscmns.org/CMNS/JCMNS-Vol11.pdf

Hagelstein P. L. Electron Mass Enhancement and the Widom豊arsen ModelJ. Condensed Matter Nucl. Sci. 12, (2013), p 18 www.iscmns.org/CMNS/JCMNS-Vol12.pdf

Hagelstein P. L. Molecular D2 Near Vacancies in PdD and Related ProblemsJ. Condensed Matter Nucl. Sci. 13, (2014), p 138 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Hagelstein P. L., Letts D. Temperature Dependence of Excess Power in Two-laser ExperimentsJ. Condensed Matter Nucl. Sci. 13, (2014), p 165 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Hagelstein P. L., Chaudhary I. U. Models for Phonon墨uclear Interactions and Collimated X-ray Emission in the Karabut ExperimentJ. Condensed Matter Nucl. Sci. 13, (2014), p 177 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Hagelstein P. L. Equation of State and Fugacity Models for H2 and for D2J. Condensed Matter Nucl. Sci. 16, (2015), p 46 www.iscmns.org/CMNS/JCMNS-Vol16.pdf

Hagelstein P. L. Empirical Models for Octahedral and Tetrahedral Occupation in PdH and in PdD at High LoadingJ. Condensed Matter Nucl. Sci. 17, (2015), p 35 www.iscmns.org/CMNS/JCMNS-Vol17.pdf

Hagelstein P. L. O-site and T-site Occupation of !-phase PdHx and PdDxJ. Condensed Matter Nucl. Sci. 17, (2015), p 67 www.iscmns.org/CMNS/JCMNS-Vol17.pdf

Hagelstein P. L. Models for the Phase Diagram of Palladium Hydride Including O-site and T-site OccupationJ. Condensed Matter Nucl. Sci. 20, (2016), p 54 www.iscmns.org/CMNS/JCMNS-Vol20.pdf

Hagelstein P. L. Quantum Composites: A Review, and New Results for Models for Condensed Matter Nuclear ScienceJ. Condensed Matter Nucl. Sci. 20, (2016), p 139 www.iscmns.org/CMNS/JCMNS-Vol20.pdf

Hagelstein P.L. Current Status of the Theory and Modeling Effort based on FractionationJ. Condensed Matter Nucl. Sci. 19, (2016), p 98 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Hagelstein P.L. Statistical Mechanics Models for PdHx and PdDxJ. Condensed Matter Nucl. Sci. 24, (2017), p 87 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Hagelstein P.L., Chaudhary I.U. Coupling between the Center of Mass and Relative Degrees of Freedom in a Relativistic Quantum Composite and ApplicationsJ. Condensed Matter Nucl. Sci. 24, (2017), p 114 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Hagelstein, P.L. ForwardProc. ICCF10 (2003), www.lenr-canr.org/acrobat/Hagelsteinforward.pdf

Hagelstein, P.L. Resonant Tunneling and Resonant Excitation TransferProc. ICCF10 (2003), www.lenr-canr.org/acrobat/Hagelsteinresonanttu.pdf

Hagelstein, P.L. Thermal to Electric Energy ConversionProc. ICCF10 (2003), www.lenr-canr.org/acrobat/Hagelsteinthermaltoe.pdf

Hagelstein, P.L. Unified Phonon-Coupled SU(N) Models For Anomalies In Metal DeuteridesProc. ICCF10 (2003), www.lenr-canr.org/acrobat/Hagelsteinunifiedpho.pdf

Hagelstein, P.L. A unified model for anomalies in metal deuterideswww.lenr-canr.org/acrobat/Hagelsteinaunifiedmoa.pdf

Hagelstein, P.L. Summary of ICCF3 in Nagoya, Feb. 16, 1993www.lenr-canr.org/acrobat/Hagelsteinsummaryofi.pdf

Hagelstein, P.L., et al. New Physical Effects in Metal DeuteridesProc. ICCF11 (2004), www.lenr-canr.org/acrobat/Hagelsteinnewphysica.pdf

Hale G., Talley T. Deuteron-Induced Fusion in Various EnvironmentsProc. ICCF4 1, (1993), p 303 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Handel P. Subtraction of a New Thermo-Electromechanical Effect from the Excess Heat, and the Emerging Avenues to Cold FusionProc. ICCF4 2, (1993), p 99 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Hansen W., Melich M. Pd/D Calorimetry – The Key to the F/P Effect and a Challenge to ScienceProc. ICCF4 2, (1993), p 155 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Hansen, W.N. Report to the Utah State Fusion/Energy Council on the Analysis of Selected Pons Fleischmann Calorimetric DataProc. ACCF2. SIF Conference Proceedings 33. The Science of Cold Fusion. (1991), www.lenr-canr.org/acrobat/HansenWNreporttoth.pdf

Hansen, W.N., G. Hansen, and D. Glenn. Analysis of Some Electrochemical Calorimetry DataProc. ICCF10 (2003), www.lenr-canr.org/acrobat/HansenWNanalysisof.pdf

Hasegawa M., Hayakawa, et al. Observation of Excess Heat During Electrolysis of 1M LiOD in a Fuel Cell Type Closed CellProc. ICCF4 1, (1993), p 91 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

He J., Zhang Y., et al. A Study on Anomalous Nuclear Fusion Reaction by Using a HV Pulse DischargeProc. ICCF4 3, (1993), p 89 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

He. J., Zhang Y., et al. Detection of Charactaristic Gamma Rays from Electrodes in Pd/D System by HV DischargeInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 227 www.iscmns.org/FIC/CFSB.pdf

Henry-Couannier From Dark Gravity to LENRJ. Condensed Matter Nucl. Sci. 18, (2016), p 1 www.iscmns.org/CMNS/JCMNS-Vol18.pdf

Henry-Couannier F. The Dark side of Gravity and LENRJ. Condensed Matter Nucl. Sci. 21, (2016), p 59 www.iscmns.org/CMNS/JCMNS-Vol21.pdf

Higashiyama, Y., et al. Replication of MHI transmutation experiment by D2 gas permeation through Pd complexProc. ICCF10 (2003), www.lenr-canr.org/acrobat/Higashiyamreplicatio.pdf

Hioki T., Azuma H., et al. Absorption Capacity and Heat Evolution with Loading of Hydrogen Isotope Gases for Pd Nanopowder and Pd/Ceramics NanocompositeJ. Condensed Matter Nucl. Sci. 4, (2011), p 69 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Hioki T., Takahashi N., et al. Effects of Self-poisoning of Pd on the Deuterium Permeation Rate and Surface Elemental Analysis for Nuclear TransmutationJ. Condensed Matter Nucl. Sci. 6, (2012), p 64 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Hioki T., Sugimoto N., et al. Isotope Effect for Heat Generation upon Pressurizing Nano-Pd/Silica Systems with Hydrogen Isotope GasesJ. Condensed Matter Nucl. Sci. 13, (2014), p 223 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Hioki T., Ichiki A., et al. Stabilization of Nano-sized Pd Particles under Hydrogen AtmosphereJ. Condensed Matter Nucl. Sci. 24, (2017), p 123 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Hioki T., Gao J., et al. Influence of Deuterium Gas Permeation on Surface Elemental Change of 88Sr Ion-Implanted Pd and Pd/CaO Multi-layer SystemProc. ICCF14 1, (2008), p 203 www.iscmns.org/iccf14/ProcICCF14a.pdf

Hoffman N. Sources Of Experimental Error In Measuring Nuclear Products Associated With The Anomalous Behavior Of Deuterium/PalladiumSystemsProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 249 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Hora H., Miley G., et al. Bose胞instein Condensation and Inverted Rydberg States in Ultra-high Density Deuterium Clusters Related to Low Energy Nuclear ReactionsJ. Condensed Matter Nucl. Sci. 13, (2014), p 234 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Hora, H. Summary about theoretical results of the 9th international conference on cold fusionProc. ICCF9 (2002), www.lenr-canr.org/acrobat/HoraHsummaryabo.pdf

Hora, H., et al. Low Energy Nuclear Reactions resulting as picometer interactions with similarity to K-shell electron captureProc. ICCF11 (2004), www.lenr-canr.org/acrobat/HoraHlowenergyna.pdf

Hora, H., et al. Shrinking of hydrogen atoms in host metals by dielectric effects and Inglis-Teller depression of ionization potentialswww.lenr-canr.org/acrobat/HoraHshrinkingo.pdf

Hora, H., G.H. Miley, and K. Philberth. Radiochemical Observations for Comparison of Uranium Fission with Low Energy Nuclear Reactions LENRwww.lenr-canr.org/acrobat/HoraHradiochemi.pdf

Huang G., Mo D., et al. The Measurements and the Control of the Loading Ratio of Deuterium in PalladiumProc. ICCF4 1, (1993), p 465 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Hubler, G.K. Anomalous Effects in Hydrogen-Charged Palladium – A review (PowerPoint slides)www.lenr-canr.org/acrobat/HublerGKanomalousea.pdf

Huggins R. Materials Aspects of the Electrochemical Insertion of Hydrogen and Deuterium into Mixed ConductorsProc. ICCF4 2, (1993), p 351 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Huggins, R.A. and W.D. Nix Decrepitation Model For Capacity Loss During Cycling of Alloys in Rechargeable Electrochemical Systemswww.lenr-canr.org/acrobat/HugginsRAdecrepitat.pdf

Hugo M. A Home Cold Fusion ExperimentProc. ICCF4 2, (1993), p 311 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Huke, A., et al. Evidence for a Target-Material Dependence of the Neutron-Proton Branching Ratio in d+d Reactions for Deuteron Energies below 20 keVProc. ICCF11 (2004), www.lenr-canr.org/acrobat/HukeAevidencefo.pdf

Huke, A., et al. Enhancement of the Deuteron-Fusion Reactions in Metals and its Experimental Implicationswww.lenr-canr.org/acrobat/HukeAenhancemen.pdf

Huke, A., K. Czerski, and P. Heide. Accelerator Experiments and Theoretical Models for the Electron Screening Effect in Metallic EnvironmentsProc. ICCF11 (2004), www.lenr-canr.org/acrobat/HukeAaccelerato.pdf

Hutchinson D. P., Bennett C. A., et al. Initial Calorimetry Experiments In The Physics DivisionProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 465 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Iazzi, F., et al. Correlated Measurements of D2 Loading and 4He Production in Pd Latticewww.lenr-canr.org/acrobat/IazziFcorrelated.pdf

Ichimaru S. Nuclear Fusion in Condensed MaterialsProc. ICCF4 1, (1993), p 315 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Iida T., Fukuhara M., et al. Deuteron Fusion Experiment with Ti and Pd Foils Implanted with Deuteron Beams IIProc. ICCF4 3, (1993), p 137 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Ikegami, H. Buffer Energy Nuclear Fusionwww.lenr-canr.org/acrobat/IkegamiHbufferener.pdf

Inomata S. Design Considerations for Superconducting Magnet in N-Machine JPI-IIInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 290 www.iscmns.org/FIC/CFSB.pdf

Isobe, Y., et al. Search for Coherent Deuteron Fusion by Beam and Electrolysis ExperimentsProc. ICCF8 (2000), www.lenr-canr.org/acrobat/IsobeYsearchforc.pdf

Isobe, Y., et al. Search for multibody nuclear reactions in metal deuteride induced with ion beam and electrolysis methodswww.lenr-canr.org/acrobat/IsobeYsearchform.pdf

Itoh T., Iwamura Y., et al. Anomalous Excess Heat Generated by the Interaction between Nano-structured Pd/Ni Surface and D2 GasJ. Condensed Matter Nucl. Sci. 24, (2017), p 179 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Iwamura Y., Itoh T., et al. Observation of Low Energy Nuclear Transmutation Reactions Induced by Deuterium Permeation through Multilayer Pd and CaO thin FilmJ. Condensed Matter Nucl. Sci. 4, (2011), p 132 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Iwamura Y., Itoh T., et al. Recent Advances in Deuterium Permeation Transmutation ExperimentsJ. Condensed Matter Nucl. Sci. 10, (2013), p 63 www.iscmns.org/CMNS/JCMNS-Vol10.pdf

Iwamura Y., Itoh T., et al. Increase of Reaction Products in Deuterium Permeation-induced TransmutationJ. Condensed Matter Nucl. Sci. 13, (2014), p 242 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Iwamura Y., Kasagi J., et al. The Launch of a New Plan on Condensed Matter Nuclear Science at Tohoku UniversityJ. Condensed Matter Nucl. Sci. 19, (2016), p 119 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Iwamura Y., Itoh T., et al. Replication Experiments at Tohoku University on Anomalous Heat Generation Using Nickel-based Binary Nanocomposites and Hydrogen Isotope GasJ. Condensed Matter Nucl. Sci. 24, (2017), p 191 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Iwamura Y., Itoh T., et al. Observation of Anomalous Nuclear Effects in D2-Pd SystemProc. ICCF4 3, (1993), p 127 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Iwamura, Y. Observation of Nuclear Transmutation Reactions induced by D2 Gas Permeation through Pd ComplexesProc. ICCF11 (2004), www.lenr-canr.org/acrobat/IwamuraYobservatiob.pdf

Iwamura, Y. Observation of Nuclear Transmutation Reactions induced by D2 Gas Permeation through Pd Complexes (PowerPoint slides)Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/IwamuraYobservatioc.pdf

Iwamura, Y., et al. Correlation between behavior of deuterium in palladium and occurance of nuclear reactions observed by simultaneous measurement of excess heat and nuclear productswww.lenr-canr.org/acrobat/IwamuraYcorrelatio.pdf

Iwamura, Y., et al. Observation of Low Energy Nuclear Reactions Induced By D2 Gas Permeation Through Pd ComplexesProc. ICCF9 (2002), www.lenr-canr.org/acrobat/IwamuraYobservatioa.pdf

Iwamura, Y., et al. Low Energy Nuclear Transmutation In Condensed Matter Induced By D2 Gas Permeation Through Pd Complexes: Correlation Between Deuterium Flux And Nuclear ProductsProc. ICCF10 (2003), www.lenr-canr.org/acrobat/IwamuraYlowenergyn.pdf

Iwamura, Y., et al. Detection of anomalous elements, X-ray and excess heat induced by continuous diffusion of deuterium through multi-layer cathode (Pd/CaO/Pd)www.lenr-canr.org/acrobat/IwamuraYdetectionoa.pdf

Iwamura, Y., M. Sakano, and T. Itoh Elemental Analysis of Pd Complexes: Effects of D2 Gas Permeationwww.lenr-canr.org/acrobat/IwamuraYelementalaa.pdf

Iwamura, Y., T. Itoh, and M. Sakano Nuclide Transmutation Device and Nuclide Transmutation Methodwww.lenr-canr.org/acrobat/IwamuraYnuclidetra.pdf

Iwamura, Y., T. Itoh, and M. Sakano. Nuclear Products and Their Time Dependence Induced by Continuous Diffusion of Deuterium Through Multi-layer Palladium Containing Low Work Function MaterialProc. ICCF8 (2000), www.lenr-canr.org/acrobat/IwamuraYnuclearpro.pdf

Iyengar, P.K. Cold Fusion Results in BARC Experimentswww.lenr-canr.org/acrobat/IyengarPKcoldfusion.pdf

Iyengar, P.K. Preface and Summarywww.lenr-canr.org/acrobat/IyengarPKprefaceand.pdf

Iyengar, P.K. and M. Srinivasan. Overview of BARC Studies in Cold FusionProc. ACCF1 (1990), www.lenr-canr.org/acrobat/IyengarPKoverviewof.pdf

Jacques DuFour, J. Foos, J.P. Millot Cold Fusion by Sparking in Hydrogen IsotopesInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 211 www.iscmns.org/FIC/CFSB.pdf

James L. Griggs Calorimetric Study of Excess Heat Production Within the Hydrosonic Pump System Using Light WaterInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 284 www.iscmns.org/FIC/CFSB.pdf

Jayaraman, K.S. Cold fusion hot againwww.lenr-canr.org/acrobat/JayaramanKcoldfusion.pdf

Jiang S., Xu X., et al. Neutron Burst Emissions from Uranium Deuteride and Deuterium-loaded TitaniumJ. Condensed Matter Nucl. Sci. 13, (2014), p 253 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Jiang S., Li J., et al. New Results of Charged Particles Released From Deuterium-Loaded Metal at Low TemperatureProc. ICCF14 1, (2008), p 299 www.iscmns.org/iccf14/ProcICCF14a.pdf

Jiang, X., et al. Anomalous Nuclear Phenomena Assocoated with Ultrafast Processes7th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Asti, Italy. (2006), www.lenr-canr.org/acrobat/JiangXanomalousn.pdf

Jin S., Zhan F., et al. Deuterium Absorbability and Anomalous Nuclear Effect of YBCO High Temperature SuperconductorProc. ICCF4 3, (1993), p 61 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Johnson K. Jahn-Teller Symmetry Breaking and Hydrogen Energy in Gamma-PdD ‘Cold Fusion’ as Storage of the Latent Heat of WaterProc. ICCF4 4, (1993), p 105 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Johnson K. H. Jahn-Teller Symmetry Braking and Hydrogen Energy in PdD ‘Cold Fusion’ as Storage of the Latent Heat of WaterInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 91 www.iscmns.org/FIC/CFSB.pdf

Johnson R., Melich M. Weight of Evidence for the Fleischmann鳳ons EffectJ. Condensed Matter Nucl. Sci. 4, (2011), p 225 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Jones S., Jones D., et al. Search for Neutron, Gamma, and X-Ray Emissions from Pd/LiOD Electrolytic Cells: A Null ResultProc. ICCF4 3, (1993), p 263 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Jones, S.E. Chasing anomalous signals: the cold fusion questionwww.lenr-canr.org/acrobat/JonesSEchasingano.pdf

Jones, S.E. and J. Ellsworth. Geo-fusion and Cold NucleosynthesisProc. ICCF10 (2003), www.lenr-canr.org/acrobat/JonesSEgeofusiona.pdf

Jones, S.E., et al. Charged-particle Emissions from Metal DeuteridesProc. ICCF10 (2003), www.lenr-canr.org/acrobat/JonesSEchargedpar.pdf

Jones, S.E., et al. Neutron Emissions from Metal DeuteridesProc. ICCF10 (2003), www.lenr-canr.org/acrobat/JonesSEneutronemi.pdf

Josephson, B. www.lenr-canr.org/acrobat/JosephsonBabstractfo.pdf

Josephson, B. Pathological Disbeliefwww.lenr-canr.org/acrobat/JosephsonBpathologic.pdf

Kainthla, R.C., et al. Sporadic observation of the Fleischmann-Pons heat effectwww.lenr-canr.org/acrobat/KainthlaRCsporadicob.pdf

Kaliev K., Sverdlov N., et al. The Initiation of Reproducible Nuclear Reactions in the Structures of the Oxide Tungsten BronzeProc. ICCF4 3, (1993), p 213 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Kamada, K. Electron Impact H-H and D-D Fusions in Molecules Embedded in Alwww.lenr-canr.org/acrobat/KamadaKelectronim.pdf

Kamada, K., H. Kinoshita, and H. Takahashi Anomalous heat evolution of deuterium-implanted Al upon electron bombardmentwww.lenr-canr.org/acrobat/KamadaKanomalousha.pdf

Karabut A. Research into Energy and Temporal Characteristics of X-ray Emission from Solid State Cathode Medium of High-Current Glow DischargeProc. ICCF12 (2005), www.iscmns.org/iccf12/Karabut_2.pdf

Karabut A. Research into Low Energy Nuclear Reactions in Cathode Sample Solid with Production of Excess Heat, Stable and Radioactive Impurity NuclidesProc. ICCF12 (2005), www.iscmns.org/iccf12/Karabut_1.pdf

Karabut A., Karabut E. Electric and Heat Measurements in High Voltage Electrolysis Cell ExperimentsProc. ICCF14 1, (2008), p 169 www.iscmns.org/iccf14/ProcICCF14a.pdf

Karabut A., Karabut E. Research into Spectra of X-ray Emission from Solid Cathode Medium During and After High Current Glow Discharge OperationProc. ICCF14 1, (2008), p 362 www.iscmns.org/iccf14/ProcICCF14a.pdf

Karabut A. B., Karabut E. A. Experimental results on Excess Heat Power, Impurity Nuclides and X-ray Production in Experiments with a High-Voltage Electric Discharge SystemJ. Condensed Matter Nucl. Sci. 6, (2012), p 199 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Karabut A. B., Karabut E. A., et al. Spectral and Temporal Characteristics of X-ray Emission from Metal Electrodes in a High-current Glow DischargeJ. Condensed Matter Nucl. Sci. 6, (2012), p 217 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Karabut A. B., Karabut E. A. Experimental Results on Excess Power, Impurity Nuclides, and X-ray Production in Experiments with a High-voltage Electric Discharge SystemJ. Condensed Matter Nucl. Sci. 8, (2012), p 139 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Karabut A. B., Karabut E. A. Research into Excited 0.6�6.0 keV Energy Levels in the Cathode Solid Medium of Glow Discharge by X-ray Spectra EmissionJ. Condensed Matter Nucl. Sci. 8, (2012), p 159 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Karabut, A.B. Experimental Research on 0.5 窶� 10 keV High-Energy Process Resulting from H2 and D2 Ions Flux Interaction with Cathode Solid in Electric Discharge7th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Asti, Italy. (2006), www.lenr-canr.org/acrobat/KarabutABexperimentb.pdf

Karabut, A.B. Scientific Research Project: Experimental Research And Development Of Heat Power Supply Prototype Based On High-Energy Processes In Solid Medium Interacting With Hydrogen Ions Flux7th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Asti, Italy. (2006), www.lenr-canr.org/acrobat/KarabutABscientific.pdf

Karabut, A.B. Analysis of Experimental Results on Excess Heat Power Production, Impurity Nuclides Yield in the Cathode Material and Penetrating Radiation in Experiments with High-Current Glow DischargeProc. ICCF8 (2000), www.lenr-canr.org/acrobat/KarabutABanalysisof.pdf

Karabut, A.B. X-ray emission in the high-current glow discharge experimentsProc. ICCF9 (2002), www.lenr-canr.org/acrobat/KarabutABxrayemissi.pdf

Karabut, A.B. Experimental Research Into Secondary Penetrating Radiation When Interacting X-Ray Beams Of Solid Laser With Various Materials TargetsProc. ICCF10 (2003), www.lenr-canr.org/acrobat/KarabutABexperimenta.pdf

Karabut, A.B. Production Of Excess Heat, Impurity Elements And Unnatural Isotopic Ratios Formed At Excited Long-Lived Atomic Levels With Energy Of More Than 1 keV In A Solid Cathode Medium During High-Current Glow DischargeProc. ICCF10 (2003), www.lenr-canr.org/acrobat/KarabutABproduction.pdf

Karabut, A.B. Excess Heat Production In Pd/D During Periodic Pulse Discharge Current Of Various ConditionsProc. ICCF11 (2004), www.lenr-canr.org/acrobat/KarabutABexcessheatb.pdf

Karabut, A.B. Research Into Characteristics Of X-Ray Emission Laser Beams From Solid-State Cathode Medium Of High-Current Glow DischargeProc. ICCF11 (2004), www.lenr-canr.org/acrobat/KarabutABresearchin.pdf

Karabut, A.B. Excess heat power, nuclear products and X-ray emission in relation to the high current glow discharge experimental parameterswww.lenr-canr.org/acrobat/KarabutABexcessheata.pdf

Karabut, A.B. and S.A. Kolomeychenko. Experimental Research into Characteristics of X-ray Emission from Solid-state Cathode Medium of High-current Glow DischargeProc. ICCF10 (2003), www.lenr-canr.org/acrobat/KarabutABexperiment.pdf

Karabut, A.B., Y.R. Kucherov, and I.B. Savvatimova Nuclear product ratio for glow discharge in deuteriumwww.lenr-canr.org/acrobat/KarabutABnuclearpro.pdf

Karabut, A.B., Y.R. Kucherov, and I.B. Savvatimova. Possible Nuclear Reactions Mechanisms at Glow Discharge in Deuteriumwww.lenr-canr.org/acrobat/KarabutABpossiblenu.pdf

Kasagi J., Honda Y. Pictorial Description for LENR in Linear Defects of a LatticeJ. Condensed Matter Nucl. Sci. 19, (2016), p 127 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Kasagi J. Screening Potential for Nuclear Reactions in Condensed MatterProc. ICCF14 1, (2008), p 318 www.iscmns.org/iccf14/ProcICCF14a.pdf

Kasagi, J. Low Energy D+D Reactions in Metalwww.lenr-canr.org/acrobat/KasagiJlowenergyd.pdf

Kasagi, J., et al. Low Energy Nuclear Fusion Reactions in SolidsProc. ICCF8 (2000), www.lenr-canr.org/acrobat/KasagiJlowenergyn.pdf

Kasagi, J., et al. Anomalously Enhanced D(d,p)T Reaction in Pd and PdO Observed at Very Low Bombarding Energieswww.lenr-canr.org/acrobat/KasagiJanomalousl.pdf

Kasagi, J., et al. Measurements of the D + D Reaction in Ti Metal with Incident Energies between 4.7 and 18 keVwww.lenr-canr.org/acrobat/KasagiJmeasuremen.pdf

Kasagi, J., et al. Strongly Enhanced Li + D Reaction in Pd Observed in Deuteron Bombardment on PdLix with Energies between 30 and 75 keVwww.lenr-canr.org/acrobat/KasagiJstronglyena.pdf

Kasagi, J., et al. Energetic Protons and alpha Particles Emitted in 150-keV Deuteron Bombardment on Deuterated Tiwww.lenr-canr.org/acrobat/KasagiJenergeticp.pdf

Kasagi, J., et al. Strongly Enhanced DD Fusion Reaction in Metals Observed for keV D+ Bombardmentwww.lenr-canr.org/acrobat/KasagiJstronglyen.pdf

Kenji Fukushima, Tadahiro Yamamoto The Upper Bound of Hot Spot Temperatures Induced by a Supersonic FieldInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 279 www.iscmns.org/FIC/CFSB.pdf

Kennel E. Investigation of Deuterium Glow Discharges of the Kucherov TypeProc. ICCF4 4, (1993), p 485 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Kidwell D. Trace Analysis of Elements in a Palladium MatrixProc. ICCF14 1, (2008), p 180 www.iscmns.org/iccf14/ProcICCF14a.pdf

Kidwell D. A., Imam M. A. Fabrication, Characterization, and Evaluation of Excess Heat in Zirconium鋒ickel鳳alladium AlloysJ. Condensed Matter Nucl. Sci. 8, (2012), p 208 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Kidwell, D., et al. Does Gas Loading Produce Anomalous Heat? (PowerPoint slides)Proc. ICCF15 (2009), www.lenr-canr.org/acrobat/KidwellDdoesgasloa.pdf

Kim Y. Bose胞instein Condensate Theory of Deuteron Fusion in MetalJ. Condensed Matter Nucl. Sci. 4, (2011), p 188 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Kim Y. Nuclear Theory Hypotheses For ‘Cold Fusion’Proceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 531 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Kim Y., Zubarev A., et al. Reaction Barrier Transparency for Cold Fusion with Deuterium and HydrogenProc. ICCF4 4, (1993), p 39 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Kim Y. Possible Evidence of Cold D(d. p)T Fusion From Dee’s 1934 ExperimentProc. ICCF4 4, (1993), p 335 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Kim Y. Theory of Low-Energy Deuterium Fusion in Micro/Nano-Scale Metal Grains and ParticlesProc. ICCF14 2, (2008), p 604 www.iscmns.org/iccf14/ProcICCF14b.pdf

Kim Y. E., Ward T. E. Bose胞instein Condensation Nuclear Fusion: Role of Monopole TransitionJ. Condensed Matter Nucl. Sci. 6, (2012), p 101 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Kim Y. E. Conventional Nuclear Theory of Low-energy Nuclear Reactions in Metals: Alternative Approach to Clean Fusion Energy GenerationJ. Condensed Matter Nucl. Sci. 13, (2014), p 264 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Kim, S.-O., A.G. Lipson, and G.H. Miley. Characterization of Pd-Ni thin film by annealing methodwww.lenr-canr.org/acrobat/KimSOcharacteri.pdf

Kim, Y.E. Quantum Many-Body Theory and Mechanisms for Low Energy Nuclear Reaction Processes in Matterwww.lenr-canr.org/acrobat/KimYEquantumman.pdf

Kim, Y.E. Surface reaction mechanism for deuterium-deuterium fusion with a gas/solid-state fusion devicewww.lenr-canr.org/acrobat/KimYEsurfacereab.pdf

Kim, Y.E. and A. Zubarev. Comment on exact upper bound on barrier penetration probabilities in many-body systemswww.lenr-canr.org/acrobat/KimYEcommentone.pdf

Kim, Y.E. and A. Zubarev. Mixtures of Charged Bosons Confined in Harmonic Traps and Bose-Einstein Condensation Mechanism for Low Energy Nuclear Reactions and Transmutation Processes in Condensed MatterProc. ICCF11 (2004), www.lenr-canr.org/acrobat/KimYEmixturesof.pdf

Kim, Y.E. and T.O. Passell. Alternative Interpretation of Low-Energy Nuclear Reaction Processes with Deuterated Metals Based on The Bose-Einstein Condensation MechanismProc. ICCF11 (2004), www.lenr-canr.org/acrobat/KimYEalternativ.pdf

Kim, Y.E., D. Koltick, and A. Zubarev. Quantum Many-Body Theory of Low Energy Nuclear Reaction Induced by Acoustic Cavitation in Deuterated LiquidProc. ICCF10 (2003), www.lenr-canr.org/acrobat/KimYEquantummana.pdf

Kim, Y.E., et al. Experimental Test of Bose-Einstein Condensation Mechanism for Low Energy Nuclear Reaction in Nanoscale Atomic ClustersProc. ICCF10 (2003), www.lenr-canr.org/acrobat/KimYEexperiment.pdf

Kim, Y.E., et al. Proposal for New Experimental Tests of the Bose-Einstein Condensation Mechanism for Low Energy Nuclear Reaction and Transmutation Processes in Deuterium Loaded Micro- and Nano-Scale CavitiesProc. ICCF11 (2004), www.lenr-canr.org/acrobat/KimYEproposalfo.pdf

King P.J., Guffey M. J., et al. Attempted Replication of Excess Heat in the Letts Dual-laser ExperimentJ. Condensed Matter Nucl. Sci. 20, (2016), p 1 www.iscmns.org/CMNS/JCMNS-Vol20.pdf

Kirkinskii V. A. Calculations of Nuclear Reactions Probability in a Crystal Lattice of Lanthanum DeuterideProc. ICCF12 (2005), www.iscmns.org/iccf12/KirkinskiiV.pdf

Kirkinskii, V.A. and Y.A. Novikov. Calculations Of Nuclear Reactions Probability In A Crystal Lattice Of Titanium DeuterideProc. ICCF10 (2003), www.lenr-canr.org/acrobat/Kirkinskiicalculatio.pdf

Kirkinskii, V.A. and Y.A. Novikov. Fusion reaction probability in iron hydride and the problem of nucleosynthesis in the earth’s interiorwww.lenr-canr.org/acrobat/Kirkinskiifusionreac.pdf

Kirkinskii, V.A. and Y.A. Novikov. Numercial calculations of cold fusion rates in metal deuterideswww.lenr-canr.org/acrobat/Kirkinskiinumercialc.pdf

Kirkinskii, V.A., V.A. Drebushchak, and A.I. Khmelnikov. Experimental evidence of excess heat output during deuterium sorption-desorption in palladium deuteridewww.lenr-canr.org/acrobat/Kirkinskiiexperiment.pdf

Kitamura A., Takahashi A., et al. Heat Evolution from Pd Nano-powders Exposed to High-pressure Hydrogen Isotopes and Associated Radiation MeasurementsJ. Condensed Matter Nucl. Sci. 4, (2011), p 56 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Kitamura A., Miyoshi Y., et al. Time-resolved Measurements of Loading Ratios and Heat Evolution in D2 (and H2)-PdキZr Mixed-oxide SystemsJ. Condensed Matter Nucl. Sci. 5, (2011), p 42 www.iscmns.org/CMNS/JCMNS-Vol5.pdf

Kitamura A., Miyoshi Y., et al. Recent Progress in Gas-phase Hydrogen Isotope Absorption/Adsorption ExperimentsJ. Condensed Matter Nucl. Sci. 13, (2014), p 277 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Kitamura A., Takahashi A., et al. A Mass-Flow-Calorimetry System for Scaled-up Experiments on Anomalous Heat Evolution at Elevated TemperaturesJ. Condensed Matter Nucl. Sci. 15, (2015), p 231 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Kitamura A., Takahashi A., et al. Effect of Minority Atoms of Binary Ni-based Nano-composites on Anomalous Heat Evolution under Hydrogen AbsorptionJ. Condensed Matter Nucl. Sci. 19, (2016), p 135 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Kitamura A., Takahashi A., et al. Collaborative Examination on Anomalous Heat Effect Using Nickel-based Binary Nanocomposites Supported by ZirconiaJ. Condensed Matter Nucl. Sci. 24, (2017), p 202 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Kitamura A. In-situ Accelerator Analyses of Palladium Complex under Deuterium PermeationProc. ICCF12 (2005), www.iscmns.org/iccf12/Kitamura.pdf

Kitamura, A., et al. D(d,p)t REACTION RATE ENHANCEMENT IN A MIXED LAYER OF Au AND PdProc. ICCF10 (2003), www.lenr-canr.org/acrobat/KitamuraAddptreacti.pdf

Kitamura, A., et al. CMNS Research Progressing in Kobe University -Deuterium Permeation and Absorption-www.lenr-canr.org/acrobat/KitamuraAcmnsresear.pdf

Kitamura, A., et al. MDE (Metal Deuterium Energy) Project 2009 Results Explanation Filewww.lenr-canr.org/acrobat/KitamuraAmdemetalde.pdf

Kleehaus A., Elsner C. Potential Economic Impact of LENR Technology in Energy MarketsJ. Condensed Matter Nucl. Sci. 13, (2014), p 290 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Klimov A., Grigorenko A., et al. High-energetic Nano-cluster Plasmoid and its Soft X-ray RadiationJ. Condensed Matter Nucl. Sci. 19, (2016), p 145 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Klimov A. Energy Release and Transmutation of Chemical Elements in Cold Heterogeneous PlasmoidsJ. Condensed Matter Nucl. Sci. 19, (2016), p 155 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Kojima, H., W.-S. Zhang, and J. Dash. Precision Measurement Of Excess Energy In Electrolytic System Pd/D/H2SO4 And Inverse-Power Distribution Of Energy Pulses Vs. Excess EnergyProc. ICCF13 (2007), www.lenr-canr.org/acrobat/KojimaHprecisionm.pdf

Komaki H. An Approach to the Probable Mechanism of the Non-Radioactive Biological Cold Fusion or So-called Kervran Effect (Part 2)Proc. ICCF4 4, (1993), p 517 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Kooistra, J. The Alternate View – LENR Part Iwww.lenr-canr.org/acrobat/KooistraJthealterna.pdf

Kooistra, J. The Alternate View – LENR Part IIwww.lenr-canr.org/acrobat/KooistraJthealternaa.pdf

Kopecek, R. and J. Dash Excess Heat and Unexpected Elements from Electrolysis of Heavy Water with Titanium Cathodeswww.lenr-canr.org/acrobat/KopecekRexcessheat.pdf

Kornilova A., Vysotskii V., et al. Investigation of Radiation Effects at Bubble Cavitation in Running LiquidProc. ICCF14 2, (2008), p 418 www.iscmns.org/iccf14/ProcICCF14b.pdf

Kovacs A., Brown D., et al. Exothermic Reactions in the Partially Molten Li鋒i砲u AlloyJ. Condensed Matter Nucl. Sci. 25, (2017), p 159 www.iscmns.org/CMNS/JCMNS-Vol25.pdf

Kowalski L. Comments on Codeposition Electrolysis ResultsJ. Condensed Matter Nucl. Sci. 3, (2010), p 1 www.iscmns.org/CMNS/JCMNS-Vol3.pdf

Kowalski L. On emission of nuclear particles caused by electrolysis8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 152 www.iscmns.org/catania07/ProcW8.pdf

Kowalski, L. Teachers Debate Cold FusionProc. ICCF10 (2003), www.lenr-canr.org/acrobat/KowalskiLteachersde.pdf

Kowalski, L. The Dilemma Of A Physics TeacherProc. ICCF10 (2003), www.lenr-canr.org/acrobat/KowalskiLthedilemma.pdf

Kowalski, L. History of attempts to publish a paperProc. ICCF11 (2004), www.lenr-canr.org/acrobat/KowalskiLhistoryofa.pdf

Kowalski, L. Nuclear or not nuclear: how to decide?www.lenr-canr.org/acrobat/KowalskiLnuclearorn.pdf

Kowalski, L. Please Donate ICCF Proceedings To The Niels Bohr Librarywww.lenr-canr.org/acrobat/KowalskiLpleasedona.pdf

Kowalski, L. Recent cold fusion claims: are they valid?www.lenr-canr.org/acrobat/KowalskiLrecentcold.pdf

Kowalski, L. Comments on ‘The Use of CR-39 in Pd/D Co-deposition Experiments’ by P.A. Mosier-Boss, S. Szpak, F.E. Gordon and L.P.G. Forsely, Interpreting SPAWAR-Type Dominant Pitswww.lenr-canr.org/acrobat/KowalskiLcommentson.pdf

Kowalski, L., et al. Charged particles from Ti and Pd foilsProc. ICCF11 (2004), www.lenr-canr.org/acrobat/KowalskiLchargedpar.pdf

Kozima H. Trapped Neutron Catalyzed Fusion of Deuterons and Protons in Inhomogeneous SolidsProc. ICCF4 4, (1993), p 55 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Kozima H. Complexity in the Cold Fusion PhenomenonProc. ICCF14 2, (2008), p 613 www.iscmns.org/iccf14/ProcICCF14b.pdf

Kozima H., Date H. Nuclear Transmutations in Polyethylene (XLPE) Films and Water Tree Generation in ThemProc. ICCF14 2, (2008), p 618 www.iscmns.org/iccf14/ProcICCF14b.pdf

Kozima, H. CF-Matter and the Cold Fusion PhenomenonProc. ICCF10 (2003), www.lenr-canr.org/acrobat/KozimaHcfmatteran.pdf

Kozima, H., et al. Consistent explanation of topography changes and nuclear transmutation in surface layers of cathodes in electrolytic cold fusion experimentswww.lenr-canr.org/acrobat/KozimaHconsistent.pdf

Krishnan, M.S., et al. Cold Fusion Experiments Using a Commercial Pd-Ni Electrolyserwww.lenr-canr.org/acrobat/KrishnanMScoldfusion.pdf

Krishnan, M.S., et al. Evidence for Production of Tritium via Cold Fusion Reactions in Deuterium Gas Loaded Palladiumwww.lenr-canr.org/acrobat/KrishnanMSevidencefo.pdf

Krishnan, M.S., et al. Observation Of Cold Fusion In A Ti-SS Electrochemical Cellwww.lenr-canr.org/acrobat/KrishnanMSobservatio.pdf

Krivit, S. How Can Cold Fusion Be Real, Considering It Was Disproved By Several Well-Respected Labs In 1989? (PowerPoint slides)www.lenr-canr.org/acrobat/KrivitShowcancolda.pdf

Krivit, S. How Can Cold Fusion Be Real, Considering It Was Disproved By Several Well-Respected Labs In 1989?www.lenr-canr.org/acrobat/KrivitShowcancold.pdf

Krivit, S. and B. Daviss Extraordinary Evidencewww.lenr-canr.org/acrobat/KrivitSextraordin.pdf

Krivit, S. and J. Marwan A new look at low-energy nuclear reaction researchwww.lenr-canr.org/acrobat/KrivitSanewlookat.pdf

Krivit, S. and N. Winocur The Rebirth of Cold Fusion: Real Science, Real Hope, Real Energywww.lenr-canr.org/acrobat/KrivitStherebirth.pdf


Kunimatsu, K., et al. Deuterium Loading Ratio and Excess Heat Generation During Electrolysis of Heavy Water by Palladium Cathode in a Closed Cell Using a Partially Immersed Fuel Cell Anodewww.lenr-canr.org/acrobat/KunimatsuKdeuteriuml.pdf

K疝m疣 P., Keszthelyi T. Cooperative Internal Conversion ProcessJ. Condensed Matter Nucl. Sci. 25, (2017), p 129 www.iscmns.org/CMNS/JCMNS-Vol25.pdf

K疝m疣 P., Keszthelyi T. Recoil Assisted Low Energy Nuclear ReactionsJ. Condensed Matter Nucl. Sci. 25, (2017), p 142 www.iscmns.org/CMNS/JCMNS-Vol25.pdf

L.P. Bulat, V.S. Zakordonets Semiconductor Thermal-Mechanical Energy ConverterInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 271 www.iscmns.org/FIC/CFSB.pdf

Lakshmanan A. Excess Energy Release During Na Metal Dissolution in a Dilute Epsom (MgSO4キ7H2O)J. Condensed Matter Nucl. Sci. 9, (2012), p 64 www.iscmns.org/CMNS/JCMNS-Vol9.pdf

Lakshmanan A. Anomalous Heat Energy Released through Cavitation-Coulombic Repulsion Oscillations Following Sodium Metal Dissolution in a Dilute Epsom Solution � Plausible MechanismsJ. Condensed Matter Nucl. Sci. 9, (2012), p 72 www.iscmns.org/CMNS/JCMNS-Vol9.pdf

Lanza, F., et al. Tritium Production Resulting From Deuteration of Different Metals and AlloysProc. ACCF2. SIF Conference Proceedings 33. The Science of Cold Fusion. (1991), www.lenr-canr.org/acrobat/LanzaFtritiumpro.pdf

Lautzenhiser T. V., Phelps D. W., et al. Constant Heat Flow CalorimeterProc. ICCF14 1, (2008), p 53 www.iscmns.org/iccf14/ProcICCF14a.pdf

Lautzenhiser, T. and D. Phelps Cold Fusion: Report on a Recent Amoco Experimentwww.lenr-canr.org/acrobat/Lautzenhiscoldfusion.pdf

Lee K., , Jang H., et al. A Change of Tritium Content in D2O Solutions during Pd/D Co-depositionJ. Condensed Matter Nucl. Sci. 13, (2014), p 294 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

LENR-CANR The DoE Lies Againwww.lenr-canr.org/acrobat/LENRCANRthedoelies.pdf

Letts D. Codeposition Methods: A Search for Enabling FactorsJ. Condensed Matter Nucl. Sci. 4, (2011), p 81 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Letts D., Hagelstein P. L. Modified Szpak Protocol for Excess HeatJ. Condensed Matter Nucl. Sci. 6, (2012), p 44 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Letts D. Remembering John BockrisJ. Condensed Matter Nucl. Sci. 16, (2015), p 10 www.iscmns.org/CMNS/JCMNS-Vol16.pdf

Letts D., Hagelstein P. Stimulation of Optical Phonons in Deuterated PalladiumProc. ICCF14 1, (2008), p 333 www.iscmns.org/iccf14/ProcICCF14a.pdf

Letts, D. and D. Cravens. Laser Stimulation Of Deuterated Palladium: Past And PresentProc. ICCF10 (2003), www.lenr-canr.org/acrobat/LettsDlaserstimu.pdf

Letts, D. and D. Cravens. Laser Stimulation Of Deuterated Palladium: Past And Present (PowerPoint slides)Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/LettsDlaserstimua.pdf

Lev. G. Sapogin II. On the Mechanism of Cold Nuclear FusionInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 110 www.iscmns.org/FIC/CFSB.pdf

Lev.G. Sapogin I. Deuteron Interaction in Unitary Quantum TheroyInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 103 www.iscmns.org/FIC/CFSB.pdf

Lewis E. Errata and More Evidence of Microscopic Ball Lightning (Plasmoids) in CF DevicesJ. Condensed Matter Nucl. Sci. 7, (2012), p 8 www.iscmns.org/CMNS/JCMNS-Vol7.pdf

Lewis E. H. Tracks of Ball Lightning in Apparatus?J. Condensed Matter Nucl. Sci. 2, (2009), p 13 www.iscmns.org/CMNS/JCMNS-Vol2.pdf

Lewis N. Electrochemistry Of The Palladium D2O SystemProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 23 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Lewis, E. “Cold Fusion” May Be Part Of A Scientific RevolutionProc. ICCF10 (2003), www.lenr-canr.org/acrobat/LewisEcoldfusion.pdf

Lewis, E. The Ball Lightning State In Cold FusionProc. ICCF10 (2003), www.lenr-canr.org/acrobat/LewisEtheballlig.pdf

Lewis, E. Tracks of Ball Lightning in Apparatus?www.lenr-canr.org/acrobat/LewisEtracksofba.pdf

Li X. The 3-Dimensional Resonance Tunneling in Chemically Assisted Nuclear Fission and Fusion ReactionsProc. ICCF4 4, (1993), p 25 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Li X. Searching for Truth with High Expectations. 5 Year Studies on Cold Fusion in ChinaProc. ICCF4 4, (1993), p 345 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Li X. Z. The Conjecture of the Neutrino Emission from Metal HydridesJ. Condensed Matter Nucl. Sci. 1, (2007), p 11 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Li X. Z., Dong Z. M., et al. ‘Excess Heat’ in Ni蓬 Systems and Selective Resonant TunnelingJ. Condensed Matter Nucl. Sci. 13, (2014), p 299 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Li X. Z., Dong Z. M., et al. Hydrogen僕ithium Low Energy Resonant Electron-capture and Bethe痴 Solar Energy ModelJ. Condensed Matter Nucl. Sci. 25, (2017), p 181 www.iscmns.org/CMNS/JCMNS-Vol25.pdf

Li X. Z., Liu B., et al. ‘Excess heat’ in a Gas-Loading D/Pd System with Pumping inside palladium Tube8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 204 www.iscmns.org/catania07/ProcW8.pdf

Li X. Z., Liu B., et al. Selective Resonant Tunneling through Coulomb Barrier by Confined Particles in Lattice Well8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 213 www.iscmns.org/catania07/ProcW8.pdf

Li X. Z. Multiple Scattering of Deuterium Wave Function near Surface of Palladium Lattice Proc. ICCF12 (2005), www.iscmns.org/iccf12/LiXZMST.pdf

Li X. Z., Liu B., et al. Exploring a Self-Sustaining Heater without Strong Nuclear RadiationProc. ICCF14 2, (2008), p 623 www.iscmns.org/iccf14/ProcICCF14b.pdf

Li, X.Z. Condensed Matter Nuclear Science (Introduction to Proceedings)Proc. ICCF9 (2002), www.lenr-canr.org/acrobat/LiXZcondensedm.pdf

Li, X.Z. Predictability of Theory, and Collaboration with Experimentalists in CMNS (PowerPoint slides)www.lenr-canr.org/acrobat/LiXZpredictabi.pdf

Li, X.Z. An Introduction to Cold Fusionwww.lenr-canr.org/acrobat/LiXZanintroduc.pdf

Li, X.Z. Review of CBS 60 Minutes ‘Cold Fusion is Hot Again’ (in Chinese)www.lenr-canr.org/acrobat/LiXZreviewofcb.pdf

Li, X.Z., et al. “Pumping effect” – Reproducible excess heat in a gas-loading D/Pd system-Proc. ICCF9 (2002), www.lenr-canr.org/acrobat/LiXZpumpingeff.pdf

Li, X.Z., et al. “Super-absorption” – Correlation between deuterium flux and excess heat-Proc. ICCF9 (2002), www.lenr-canr.org/acrobat/LiXZsuperabsor.pdf

Li, X.Z., et al. PROGRESS IN GAS-LOADING D/Pd SYSTEM — The feasibility of a self-sustaining heat generator —Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/LiXZprogressin.pdf

Li, X.Z., et al. Multiple Scattering Theory (MST) and Condensed Matter Nuclear Science — “Super-Absorption” in a Crystal Lattice —Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/LiXZmultiplesc.pdf

Li, X.Z., et al. The Precursor of “Cold Fusion” Phenomenon in Deuterium/Solid Systemswww.lenr-canr.org/acrobat/LiXZtheprecurs.pdf

Li, X.Z., et al. A Chinese View on Summary of Condensed Matter Nuclear Sciencewww.lenr-canr.org/acrobat/LiXZachinesevi.pdf

Li, X.Z., et al. Correlation between abnormal deuterium flux and heat flow in a D/Pd systemwww.lenr-canr.org/acrobat/LiXZcorrelatio.pdf

Liang C. L., Dong Z. M., et al. Lithium � An Important Additive in Condensed Matter Nuclear ScienceJ. Condensed Matter Nucl. Sci. 19, (2016), p 164 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Liaw B., Dig Y. Charging Hydrogen into Ni in Hydride-Containing Molten SaltsProc. ICCF4 2, (1993), p 405 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Liaw B. Y. Molten Salt Techniques for Excess Heat Prodution and the Loading IssueInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 234 www.iscmns.org/FIC/CFSB.pdf

Lietz, H. Condensed Matter Nuclear Science Status Report Germanywww.lenr-canr.org/acrobat/LietzHcondensedm.pdf

Lietz, H. Unbeachtete Forschung: Kalte Fusionwww.lenr-canr.org/acrobat/LietzHunbeachtet.pdf

Lindley, D. The Embarrassment of Cold Fusionwww.lenr-canr.org/acrobat/LindleyDtheembarra.pdf

Lipson A., Roussetski A., et al. Analysis of #2 Winthrop Williams� CR-39 detector after SPAWAR/Galileo type electrolysis experiment8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 163 www.iscmns.org/catania07/ProcW8.pdf

Lipson A., Roussetski A., et al. Analysis of the CR-39 detectors from SRI痴 SPAWAR/Galileo type electrolysis experiments #7 and #5. Signature of possible neutron emission8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 180 www.iscmns.org/catania07/ProcW8.pdf

Lipson A., Chernv I, et al. Charged Particle Emission during Electron Beam Excitation of Deuterium Subsystem in Pd and Ti- Deuteride TargetsProc. ICCF14 1, (2008), p 220 www.iscmns.org/iccf14/ProcICCF14a.pdf

Lipson, A.G. Edge plasma effects in ITER-type TOKAMAK caused by an enhancement of DD/DT reaction in metals at high currentlow energy deuteron bombardment7th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Asti, Italy. (2006), www.lenr-canr.org/acrobat/LipsonAGedgeplasma.pdf

Lipson, A.G., A.B. Karabut, and A.S. Roussetsky. Anomalous enhancement of DD-reaction, alpha emission and X-ray generation in the high current pulsing deuterium glow-discharge with Ti-cathode at the voltages ranging from 0.8-2.5 kVwww.lenr-canr.org/acrobat/LipsonAGanomalouse.pdf

Lipson, A.G., et al. Anomalous thermal neutron capture and sub-surface Pd-isotopes separation in cold-worked palladium foils as a result of deuterium loadingProc. ICCF9 (2002), www.lenr-canr.org/acrobat/LipsonAGanomaloust.pdf

Lipson, A.G., et al. In-Situ Charged Particles And X-Ray Detection In Pd Thin Film-Cathodes During Electrolysis In Li2SO4/H2OProc. ICCF9 (2002), www.lenr-canr.org/acrobat/LipsonAGinsituchar.pdf

Lipson, A.G., et al. Phenomenon of an Energetic Charged Particle Emission From Hydrogen/Deuterium Loaded MetalsProc. ICCF10 (2003), www.lenr-canr.org/acrobat/LipsonAGphenomenon.pdf

Lipson, A.G., et al. Strong Enhancement of DD-reaction Accompanied by X-ray Generation in a Pulsed Low Voltage High-Current Deuterium Glow Discharge with a Ti-CathodeProc. ICCF10 (2003), www.lenr-canr.org/acrobat/LipsonAGstrongenha.pdf

Little S. R., Luce G. A., et al. MOAC � A High Accuracy Calorimeter for Cold Fusion StudiesProc. ICCF14 1, (2008), p 47 www.iscmns.org/iccf14/ProcICCF14a.pdf

Liu B., Dong Z. M., et al. Nuclear Transmutation on a Thin Pd Film in a Gas-loading D/Pd SystemJ. Condensed Matter Nucl. Sci. 13, (2014), p 311 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Liu Fusui, Hou Yumin Theory of Fusion During Acoustic Cavitation in C3D6O LiquidJ. Condensed Matter Nucl. Sci. 1, (2007), p 142 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Liu, B., et al. Triggering A Deuterium Flux In Pd Wire Using Electromagnetic FieldProc. ICCF10 (2003), www.lenr-canr.org/acrobat/LiuBtriggering.pdf

Lochak, G. and L. Urutskoev. Low-energy nuclear reactions and the leptonic monopoleProc. ICCF11 (2004), www.lenr-canr.org/acrobat/LochakGlowenergyn.pdf

Lonchampt, G., et al. Excess Heat Measurement with Patterson Type Cellswww.lenr-canr.org/acrobat/LonchamptGexcessheat.pdf

Lonchampt, G., et al. Excess Heat Measurement with Pons and Fleischmann Type Cellswww.lenr-canr.org/acrobat/LonchamptGexcessheata.pdf

Lonchampt, G., L. Bonnetain, and P. Hieter. Reproduction of Fleischmann and Pons Experimentswww.lenr-canr.org/acrobat/LonchamptGreproducti.pdf

Long H., Yin W., et al. New Experimental Results of Anomalous Nuclear Effects in Deuterium/Metal SystemsProc. ICCF4 3, (1993), p 247 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Lu R. The Xray Emission from Elements of First Period and Cold FusionInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 240 www.iscmns.org/FIC/CFSB.pdf

Lukosi E., Prelas M., et al. Diamond-based Radiation Sensor for LENR Experiments. Part 1: Sensor Development and CharacterizationJ. Condensed Matter Nucl. Sci. 13, (2014), p 319 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Lukosi E., Prelas M., et al. Diamond-based Radiation Sensor for LENR Experiments. Part 2: Experimental Analysis of Deuterium-loaded PalladiumJ. Condensed Matter Nucl. Sci. 13, (2014), p 329 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Luo N., Miley G. H. First-principles Studies of Electronic and Ionic Transport in Palladium Hydrides/ DeuteridesJ. Condensed Matter Nucl. Sci. 6, (2012), p 241 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Luo, N. and G.H. Miley. First-Principles Studies Of Ionic And Electronic Transport In Palladium HydrideProc. ICCF10 (2003), www.lenr-canr.org/acrobat/LuoNfirstprinc.pdf

Luo, N., et al. In-Situ Charactorization of Sputtered Pd Thin-Films Undergoing ElectrolysisProc. ICCF9 (2002), www.lenr-canr.org/acrobat/LuoNinsituchar.pdf

Luo, N., et al. Enhancement Of Nuclear Reactions Due To Screening Effects Of Core ElectronsProc. ICCF10 (2003), www.lenr-canr.org/acrobat/LuoNenhancemen.pdf

Luo, N., G.H. Miley, and A.G. Lipson. Modeling of Surface and Bulk Effects in Thin-Film Pd Cathodes and High Proton Loadingwww.lenr-canr.org/acrobat/LuoNmodelingof.pdf

M. Srinivasan, N.K. Ramaswamy, R.N. Khandekar, A.B. Patwardhan, R. Sundaresan et al. Measuring Excess Heat and Tritium in electrolytic Nickel-Water CellsInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 261 www.iscmns.org/FIC/CFSB.pdf

M. Verner G. M., Swartz R. M., et al. Development of a Cold Fusion Science and Engineering CourseJ. Condensed Matter Nucl. Sci. 22, (2017), p 47 www.iscmns.org/CMNS/JCMNS-Vol22.pdf

Ma Q., Chen Y., et al. The Analysis of the Neutron Emission from the Glow Discharge in Deuterium Gas TubeProc. ICCF4 3, (1993), p 79 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Macy, M. ICCCF15 in Rome, Italywww.lenr-canr.org/acrobat/MacyMicccfinrom.pdf

Maddox, J. Farewell (not fond) to cold fusionwww.lenr-canr.org/acrobat/MaddoxJfarewellno.pdf

Mallove E. Cold Fusion: The High Frontier .. Implications for Space TechnologyProc. ICCF4 4, (1993), p 385 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Mallove, E. LENR and “Cold Fusion” Excess Heat: Their Relation to Other Anomalous Microphysical Energy Experiments and Emerging New Energy TechnologiesProc. ICCF10 (2003), www.lenr-canr.org/acrobat/MalloveElenrandcol.pdf

Mallove, E. Alchemy Nightmare: Skeptic Finds Heavy Element Transmutation Cold Fusion Experiment!www.lenr-canr.org/acrobat/MalloveEalchemynig.pdf

Mallove, E. Fire From Icewww.lenr-canr.org/acrobat/MalloveEfirefromic.pdf

Mallove, E. MIT Special Reportwww.lenr-canr.org/acrobat/MalloveEmitspecial.pdf

Marini, P., et al. Protocollo innovativo per l’ ipercaricamento di catodi di Palladio con Idrogeno messo a punto all’INFN di Frascatiwww.lenr-canr.org/acrobat/MariniPprotocollo.pdf

Marmigi A., Spallone A., et al. Anomalous heat Generation by surface oxidized Pd wires in a hydrogen atmosphere8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 224 www.iscmns.org/catania07/ProcW8.pdf

Mastromatteo U., Bertel� A., et al. Hydrogen Absorption and Excess Heat in a Constantan Wire with Nanostructured SurfaceJ. Condensed Matter Nucl. Sci. 15, (2015), p 240 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Mastromatteo U. LENR Anomalies in Pd蓬2 Systems Submitted to Laser StimulationJ. Condensed Matter Nucl. Sci. 19, (2016), p 173 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Mathews S. A., Nagel D., et al. Surface Preparation of Materials for LENR: Femtosecond Laser ProcessingJ. Condensed Matter Nucl. Sci. 15, (2015), p 268 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Matsumoto T. Cold Fusion Experiments by Using an Electrical Discharge in WaterProc. ICCF4 3, (1993), p 115 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Matsumoto T. Extraordinary Traces on Nuclear Emulsions Observed During Eectrical Discharge in WaterInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 242 www.iscmns.org/FIC/CFSB.pdf

Matsunaka, M., et al. Studies of coherent deuteron fusion and related nuclear reactions in solidwww.lenr-canr.org/acrobat/MatsunakaMstudiesofc.pdf

McCarthy W. H. Water-free Replication of Pons芳leischmann LENRJ. Condensed Matter Nucl. Sci. 15, (2015), p 256 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

McIntyre, R. Proposal for an Experiment designed to seek evidence for cold fusionProc. ICCF10 (2003), www.lenr-canr.org/acrobat/McIntyreRproposalfo.pdf

McKubre M. Calorimetric Studies of the Destructive Stimulation of Palladium and Nickel FineWiresJ. Condensed Matter Nucl. Sci. 13, (2014), p 337 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

McKubre M., Bush B., et al. Loading, Calorimetric, and Nuclear Investigation of the D/Pd SystemProc. ICCF4 1, (1993), p 127 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

McKubre M. Using resistivity to measure H/Pd and D/Pd loading; method and significance.Proc. ICCF12 (2005), www.iscmns.org/iccf12/McKubreM.pdf

McKubre M. C. H, Tanzella F. Mass Flow CalorimetryProc. ICCF14 1, (2008), p 32 www.iscmns.org/iccf14/ProcICCF14a.pdf

McKubre M. C. H., Tanzella F. L. Cold Fusion, LENR, CMNS, FPE: One Perspective on the State of the Science Based on Measurements Made at SRIJ. Condensed Matter Nucl. Sci. 4, (2011), p 32 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

McKubre M. C. H., Tanzella F. L. What is needed in LENR/FPE studies?J. Condensed Matter Nucl. Sci. 8, (2012), p 187 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

McKubre M. C. H., Tanzella F. Flux Effects in Metal Hydrogen Loading: Enhanced Mass TransferJ. Condensed Matter Nucl. Sci. 15, (2015), p 1 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

McKubre M. C. H. Personal Recollections of John O樽ara BockrisJ. Condensed Matter Nucl. Sci. 16, (2015), p 11 www.iscmns.org/CMNS/JCMNS-Vol16.pdf

McKubre M. C. H., Rocha-Filho R., et al. Electrochemical Kinetic And Thermal Studies Of The Pd/LiOd SystemProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 419 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

McKubre M.C.H. Cold Fusion � CMNS � LENR; Past, Present and Projected Future StatusJ. Condensed Matter Nucl. Sci. 19, (2016), p 183 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

McKubre M.C.H. CMNS Research � Past, Present and FutureJ. Condensed Matter Nucl. Sci. 24, (2017), p 15 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

McKubre, M.C.H. Closing comments summerizing the status and progress of experimental studiesProc. ICCF9 (2002), www.lenr-canr.org/acrobat/McKubreMCHclosingcom.pdf

McKubre, M.C.H. Review of experimental measurements involving dd reactions (PowerPoint slides)Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/McKubreMCHreviewofex.pdf

McKubre, M.C.H. The Need for Triggering in Cold Fusion ReactionsProc. ICCF10 (2003), www.lenr-canr.org/acrobat/McKubreMCHtheneedfor.pdf

McKubre, M.C.H. Cold Fusion at SRI (PowerPoint slides)www.lenr-canr.org/acrobat/McKubreMCHcoldfusion.pdf

McKubre, M.C.H. and F.L. Tanzella. Materials Issues of Loading Deuterium into Palladium and the Association with Excess Heat Productionwww.lenr-canr.org/acrobat/McKubreMCHmaterialsi.pdf

McKubre, M.C.H., et al. Calorimetry and Electrochemistry in the D/Pd SystemProc. ACCF1 (1990), www.lenr-canr.org/acrobat/McKubreMCHcalorimetr.pdf

McKubre, M.C.H., et al. Isothermal Flow Calorimetric Investigations of the D/Pd SystemProc. ACCF2. SIF Conference Proceedings 33. The Science of Cold Fusion. (1991), www.lenr-canr.org/acrobat/McKubreMCHisothermal.pdf

McKubre, M.C.H., et al. Excess Power Observations in Electrochemical Studies of the D/Pd System; The Influence of Loadingwww.lenr-canr.org/acrobat/McKubreMCHexcesspowe.pdf

McKubre, M.C.H., et al. The Emergence of a Coherent Explanation for Anomalies Observed in D/Pd and H/Pd System: Evidence for 4He and 3He ProductionProc. ICCF8 (2000), www.lenr-canr.org/acrobat/McKubreMCHtheemergen.pdf

McKubre, M.C.H., et al. Progress towards replicationProc. ICCF9 (2002), www.lenr-canr.org/acrobat/McKubreMCHprogressto.pdf

McKubre, M.C.H., et al. Development of Advanced Concepts for Nuclear Processes in Deuterated Metals, TR-104195www.lenr-canr.org/acrobat/McKubreMCHdevelopmen.pdf

McKubre, M.C.H., et al. Isothermal Flow Calorimetric Investigations of the D/Pd and H/Pd Systemswww.lenr-canr.org/acrobat/McKubreMCHisothermala.pdf

McKubre, M.C.H., F. Tanzella, and V. Violante. The Significance of Replication (PowerPoint slides)www.lenr-canr.org/acrobat/McKubreMCHthesignifi.pdf

Melich M., Hansen W. Back to the Future: The Fleischmann-Pons Effect in 1994Proc. ICCF4 2, (1993), p 145 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Melich, M.E. and W.N. Hansen. Some Lessons from 3 Years of Electrochemical Calorimetrywww.lenr-canr.org/acrobat/MelichMEsomelesson.pdf

Menlove H. O., Garcia E. and Jones S. E. Update On The Measurement Of Neutron Emission From Ti Samples In Pressurized D2 GasProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 151 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Menlove, H.O., et al. Low-background Measurements of Neutron Emission from Ti Metal in Pressurized Deuterium GasProc. ACCF2. SIF Conference Proceedings 33. The Science of Cold Fusion. (1991), www.lenr-canr.org/acrobat/MenloveHOlowbackgro.pdf

Menlove, H.O., et al. Reproducible Neutron Emission Measurements From Ti Metal in Pressurized D2 Gaswww.lenr-canr.org/acrobat/MenloveHOreproducib.pdf

Metzler F., Hagelstein P.L., et al. Developing Phonon鋒uclear Coupling Experiments with Vibrating Plates and Radiation DetectorsJ. Condensed Matter Nucl. Sci. 24, (2017), p 98 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Meulenberg A., Sinha K. P. Tunneling Beneath the 4He* Fragmentation EnergyJ. Condensed Matter Nucl. Sci. 4, (2011), p 241 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Meulenberg A. From the Naught Orbit to the <sup)4< sup=””>He Excited State</sup)4<>J. Condensed Matter Nucl. Sci. 10, (2013), p 15 www.iscmns.org/CMNS/JCMNS-Vol10.pdf

Meulenberg A. Femto-atoms and TransmutationJ. Condensed Matter Nucl. Sci. 13, (2014), p 346 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Meulenberg A., Sinha K. P. Deep-Orbit-Electron Radiation Emission in Decay from <sup)4< sup=””>H* to <sup)4< sup=””>He</sup)4<></sup)4<>J. Condensed Matter Nucl. Sci. 13, (2014), p 357 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Meulenberg A., Sinha K. P. Deep-electron Orbits in Cold FusionJ. Condensed Matter Nucl. Sci. 13, (2014), p 368 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Meulenberg A., Sinha K. P. New Visions of Physics through the Microscope of Cold FusionJ. Condensed Matter Nucl. Sci. 13, (2014), p 378 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Meulenberg A. Femto-Helium and PdD TransmutationJ. Condensed Matter Nucl. Sci. 15, (2015), p 106 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Meulenberg A. Pictorial Description for LENR in Linear Defects of a LatticeJ. Condensed Matter Nucl. Sci. 15, (2015), p 117 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Meulenberg A. Radiation Coupling: Nuclear Protons to Deep-Orbit-Electrons, then to the LatticeJ. Condensed Matter Nucl. Sci. 15, (2015), p 125 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Meulenberg A., Paillet J. L. Nature of the Deep-Dirac LevelsJ. Condensed Matter Nucl. Sci. 19, (2016), p 192 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Meulenberg A., Paillet J. L. Basis for Femto-molecules and -Ions Created from Femto-atomsJ. Condensed Matter Nucl. Sci. 19, (2016), p 202 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Meulenberg A., Paillet J. L. Implications of the Electron Deep Orbits for Cold Fusion and Physics � Deep-orbit-electron Models in LENR: Present and FutureJ. Condensed Matter Nucl. Sci. 24, (2017), p 214 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Meulenberg A., Paillet J. L. Physical Reasons for Accepting the Deep-Dirac Levels� Physical Reality vs Mathematical Models in LENRJ. Condensed Matter Nucl. Sci. 24, (2017), p 230 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Miles M. Investigations of Possible Shuttle Reactions in Co-deposition SystemsJ. Condensed Matter Nucl. Sci. 8, (2012), p 12 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Miles M. Conventional Nuclear Theory of Low-energy Nuclear Reactions in Examples of Isoperibolic Calorimetry in the Cold Fusion ControversyJ. Condensed Matter Nucl. Sci. 13, (2014), p 392 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Miles M. Co-deposition of Palladium and other Transition Metals in H2O and D2O SolutionsJ. Condensed Matter Nucl. Sci. 13, (2014), p 401 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Miles M., Bush B. Heat and Helium Measurements in Deuterated PalladiumProc. ICCF4 2, (1993), p 91 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Miles M. H., Fleischmann M. Measurements of Excess Power Effects In Pd/D2O Systems Using a New Isoperibolic CalorimeterJ. Condensed Matter Nucl. Sci. 4, (2011), p 45 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Miles M. H., Hagelstein P. L. New analysis of MIT Calorimetric ErrorsJ. Condensed Matter Nucl. Sci. 8, (2012), p 132 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Miles M. H. Thermodynamic and Kinetic Observations Concerning the D + D Fusion Reaction for the Pd/D SystemJ. Condensed Matter Nucl. Sci. 16, (2015), p 17 www.iscmns.org/CMNS/JCMNS-Vol16.pdf

Miles M. H. Excerpts From Martin Fleischmann LettersJ. Condensed Matter Nucl. Sci. 19, (2016), p 210 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Miles M. H., Fleischmann M. Twenty Year Review of Isoperibolic Calorimetric Measurements of the Fleischmann-Pons EffectProc. ICCF14 1, (2008), p 6 www.iscmns.org/iccf14/ProcICCF14a.pdf

Miles M.H. The Fleischmann鳳ons Calorimetric Methods, Equations and New ApplicationsJ. Condensed Matter Nucl. Sci. 24, (2017), p 1 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Miles, M. Calorimetric Studies of Palladium Alloy Cathodes Using Fleischmann-Pons Dewar Type CellsProc. ICCF8 (2000), www.lenr-canr.org/acrobat/MilesMcalorimetrb.pdf

Miles, M. Correlation Of Excess Enthalpy And Helium-4 Production: A ReviewProc. ICCF10 (2003), www.lenr-canr.org/acrobat/MilesMcorrelatioa.pdf

Miles, M. Fluidized Bed Experiments Using Platinum And Palladium Particles In Heavy WaterProc. ICCF10 (2003), www.lenr-canr.org/acrobat/MilesMfluidizedb.pdf

Miles, M. NEDO Final Report – Electrochemical Calorimetric Studies Of Palladium And Palladium Alloys In Heavy Waterwww.lenr-canr.org/acrobat/MilesMnedofinalr.pdf

Miles, M. Report on Calorimetric Studies at the NHE Laboratory in Sapporo, Japanwww.lenr-canr.org/acrobat/MilesMreportonca.pdf

Miles, M. Calorimetric studies of Pd/D2O+LiOD electrolysis cellswww.lenr-canr.org/acrobat/MilesMcalorimetrc.pdf

Miles, M. and Bush B.F.. Calorimetric Principles and Problems in Pd-D2O Electrolysiswww.lenr-canr.org/acrobat/MilesMcalorimetr.pdf

Miles, M. and Bush B.F.. Radiation Measurements at China Lake:Real or Artifacts?www.lenr-canr.org/acrobat/MilesMradiationm.pdf

Miles, M. and K.B. Johnson Anomalous Effects in Deuterated Systems, Final Reportwww.lenr-canr.org/acrobat/MilesManomalousea.pdf

Miles, M. and K.B. Johnson Electrochemical insertion of hydrogen into metals and alloyswww.lenr-canr.org/acrobat/MilesMelectrocheb.pdf

Miles, M. and M. Fleischmann. Precision and Accuracy of Cold Fusion Calorimetry (paper and PowerPoint slides)www.lenr-canr.org/acrobat/MilesMprecisiona.pdf

Miles, M., et al. The Elevation of Boiling Points in H2O and D2O ElectrolytesProc. ICCF9 (2002), www.lenr-canr.org/acrobat/MilesMtheelevati.pdf

Miles, M., et al. Thermal Behavior of Polarized Pd/D Electrodes Prepared by Co-depositionProc. ICCF9 (2002), www.lenr-canr.org/acrobat/MilesMthermalbeh.pdf

Miles, M., et al. Correlation of excess power and helium production during D2O and H2O electrolysis using palladium cathodeswww.lenr-canr.org/acrobat/MilesMcorrelatio.pdf

Miles, M., K.B. Johnson, and M.A. Imam. Electrochemical loading of hydrogen and deuterium into palladium and palladium-boron alloyswww.lenr-canr.org/acrobat/MilesMelectrochec.pdf

Miles, M., K.H. Park, and D.E. Stilwell. Electrochemical Calorimetric Studies of the Cold Fusion EffectProc. ACCF1 (1990), www.lenr-canr.org/acrobat/MilesMelectrochea.pdf

Miley G., Yang X., et al. Ultra-High Density Deuteron-cluster Electrode for Low-energy Nuclear ReactionsJ. Condensed Matter Nucl. Sci. 4, (2011), p 256 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Miley G., Yang X., et al. Use of D/H Clusters in LENR and Recent Results from Gas-Loaded Nanoparticle-type ClustersJ. Condensed Matter Nucl. Sci. 13, (2014), p 411 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Miley G., Ragheb M., et al. Comments About Diagnostics For Nuclear Reaction Products From Cold FusionProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 223 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Miley G. Comments About Nuclear Reaction ProductsProc. ICCF4 2, (1993), p 133 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Miley G. Intense non-linear soft x-ray emission from a hydride target during pulsed D bombardmentProc. ICCF12 (2005), www.iscmns.org/iccf12/MileyG-1.pdf

Miley G. Overview of Light Water / Hydrogen Based Low Energy Nuclear ReactionsProc. ICCF12 (2005), www.iscmns.org/iccf12/MileyG-2.pdf

Miley G. Summary of the Transmutation Workshop Held in Association with ICCF-14Proc. ICCF14 1, (2008), p 212 www.iscmns.org/iccf14/ProcICCF14a.pdf

Miley G., Hora H., et al. Condensed Matter ‘Cluster’ Reactions in LENRsProc. ICCF14 2, (2008), p 451 www.iscmns.org/iccf14/ProcICCF14b.pdf

Miley George H. Preparata Medal Lecture – A Tribute to Giuliano Preparata, a TRUE Pioneer in Cold Fusion Theory8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 1 www.iscmns.org/catania07/ProcW8.pdf

Miley George H., Hora H., et al. Cluster Reactions in Low Energy Nuclear Reactions (LENRs)8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 235 www.iscmns.org/catania07/ProcW8.pdf

Miley, G.H. On the Reaction Product and Heat Correlation for LENRsProc. ICCF8 (2000), www.lenr-canr.org/acrobat/MileyGHonthereact.pdf

Miley, G.H. A Fascinating Review of the Emerging Science of LENRswww.lenr-canr.org/acrobat/MileyGHafascinati.pdf

Miley, G.H. Some personal reflections on scientific ethics and the cold fusion ‘episode’www.lenr-canr.org/acrobat/MileyGHsomeperson.pdf

Miley, G.H. and J.A. Patterson Nuclear transmutations in thin-film nickel coatings undergoing electrolysiswww.lenr-canr.org/acrobat/MileyGHnucleartra.pdf

Miley, G.H. and P. Shrestha. Review Of Transmutation Reactions In SolidsProc. ICCF10 (2003), www.lenr-canr.org/acrobat/MileyGHreviewoftr.pdf

Miley, G.H., et al. Future Power Generation by LENR with Thin-Film Electrodes (PowerPoint slides)www.lenr-canr.org/acrobat/MileyGHfuturepowe.pdf

Miley, G.H., et al. Progress in thin-film LENR research at the University of Illinoiswww.lenr-canr.org/acrobat/MileyGHprogressina.pdf

Minari, T., et al. Experiments on Condensed Matter Nuclear Events in Kobe UniversityProc. ICCF11 (2004), www.lenr-canr.org/acrobat/MinariTexperiment.pdf

Miyamaru H., Chimi Y., et al. Search for Nuclear Products of Cold FusionProc. ICCF4 2, (1993), p 61 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Miyamoto S., Sueki K., et al. Movement of Li During Electrolysis of O.lM-LiOD/D2O SolutionProc. ICCF4 2, (1993), p 391 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Miyoshi Y., Sakoh H., et al. Effect of Forced Oxidation on Hydrogen Isotope Absorption/Adsorption Characteristics of Pd鋒i忙r Oxide CompoundsJ. Condensed Matter Nucl. Sci. 10, (2013), p 46 www.iscmns.org/CMNS/JCMNS-Vol10.pdf

Mizuno T. Method of Controlling a Chemically Induced Nuclear Reaction in Metal NanoparticlesJ. Condensed Matter Nucl. Sci. 13, (2014), p 422 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Mizuno T. Observation of Excess Heat by Activated Metal and Deuterium GasJ. Condensed Matter Nucl. Sci. 25, (2017), p 1 www.iscmns.org/CMNS/JCMNS-Vol25.pdf

Mizuno T., Enyo M., et al. Anomalous Heat Evolution from SrCe03-Type Proton Conductors During Absorption/Desorption of Deuterium in Alternating Electric FieldProc. ICCF4 2, (1993), p 221 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Mizuno T. Anomalous energy generation during conventional electrolysisProc. ICCF12 (2005), www.iscmns.org/iccf12/MizunoT.pdf

Mizuno T., Sawada S. Anomalous Heat Generation during Hydrogenation of Carbon (Phenanthrene)Proc. ICCF14 1, (2008), p 147 www.iscmns.org/iccf14/ProcICCF14a.pdf

Mizuno, T. Analysis of Elements for Solid State Electrolyte in Deuterium Atmosphere during Applied Fieldwww.lenr-canr.org/acrobat/MizunoTanalysisof.pdf

Mizuno, T. Experimental Confirmation of the Nuclear Reaction at Low Energy Caused by Electrolysis in the Electrolytewww.lenr-canr.org/acrobat/MizunoTexperiment.pdf

Mizuno, T. Jyouon kakuyuugou purojekuto (cold fusion project)www.lenr-canr.org/acrobat/MizunoTjyouonkaku.pdf

Mizuno, T. Nuclear Transmutation: The Reality of Cold Fusionwww.lenr-canr.org/acrobat/MizunoTnucleartra.pdf

Mizuno, T., et al. Confirmation of Heat Generation and Anomalous Element Caused by Plasma Electrolysis in the LiquidProc. ICCF8 (2000), www.lenr-canr.org/acrobat/MizunoTconfirmatia.pdf

Mizuno, T., et al. Relation Between Neutron Evolution and Deuterium Permeation With a Palladium ElectrodeProc. ICCF9 (2002), www.lenr-canr.org/acrobat/MizunoTrelationbe.pdf

Mizuno, T., et al. Generation of Heat and Products During Plasma ElectrolysisProc. ICCF11 (2004), www.lenr-canr.org/acrobat/MizunoTgenerationa.pdf

Mizuno, T., et al. Neutron emission from D2 gas in magnetic fields under low temperatureProc. ICCF11 (2004), www.lenr-canr.org/acrobat/MizunoTneutronemi.pdf

Mizuno, T., et al. Hydrogen Evolution by Plasma Electrolysis in Aqueous Solutionwww.lenr-canr.org/acrobat/MizunoThydrogenev.pdf

Mizuno, T., et al. Neutron Evolution from a Palladium Electrode by Alternate Absorption Treatment of Deuterium and Hydrogenwww.lenr-canr.org/acrobat/MizunoTneutronevoa.pdf

Mizuno, T., et al. Production of Heat During Plasma Electrolysiswww.lenr-canr.org/acrobat/MizunoTproduction.pdf

Mizuno, T., T. Akimoto, and T. Ohmori. Confirmation of anomalous hydrogen generation by plasma electrolysiswww.lenr-canr.org/acrobat/MizunoTconfirmatib.pdf

Mizuno, T., T. Ohmori, and M. Enyo Anomalous Isotopic Distribution in Palladium Cathode After Electrolysiswww.lenr-canr.org/acrobat/MizunoTanomalousi.pdf

Mizuno, T., T. Ohmori, and M. Enyo Isotopic changes of the reaction products induced by cathodic electrolysis in Pdwww.lenr-canr.org/acrobat/MizunoTisotopicch.pdf

Mizuno, T., T. Ohmori, and T. Akimoto. Generation of Heat and Products During Plasma ElectrolysisProc. ICCF10 (2003), www.lenr-canr.org/acrobat/MizunoTgeneration.pdf

Montereali R. M. A Novel LiF-based Detector for X-ray Imaging in Hydrogen Loaded Ni Films under LaserProc. ICCF12 (2005), www.iscmns.org/iccf12/MonterealiR.pdf

Moon, D. The Nucleovoltaic CellProc. ICCF11 (2004), www.lenr-canr.org/acrobat/MoonDthenucleov.pdf

Morrison D. Review of Progress in Cold FusionProc. ICCF4 4, (1993), p 373 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Mosier-Boss P. A., Forsley L. P. G., et al. Comments on Codeposition Electrolysis Results: A Response to KowalskiJ. Condensed Matter Nucl. Sci. 3, (2010), p 4 www.iscmns.org/CMNS/JCMNS-Vol3.pdf

Mosier-Boss P. A., Dea J. Y., et al. Review of Twenty Years of LENR Research Using Pd/D Co-depositionJ. Condensed Matter Nucl. Sci. 4, (2011), p 173 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Mosier-Boss P. A., Gordon F. E., et al. Characterization of Neutrons Emitted during Pd/D Co-depositionJ. Condensed Matter Nucl. Sci. 6, (2012), p 13 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Mosier-Boss P. A. A Review on Nuclear Products Generated During Low-Energy Nuclear Reactions (LENR)J. Condensed Matter Nucl. Sci. 6, (2012), p 135 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Mosier-Boss P. A., Forsley L.P., et al. How the Flawed Journal Review Process Impedes Paradigm Shifting DiscoveriesJ. Condensed Matter Nucl. Sci. 12, (2013), p 1 www.iscmns.org/CMNS/JCMNS-Vol12.pdf

Mosier-Boss P. A. It is Not Low Energy � But it is NuclearJ. Condensed Matter Nucl. Sci. 13, (2014), p 432 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Mosier-Boss P. A., Forsley L. P. G., et al. The Use of CR-39 Detectors in LENR ExperimentsJ. Condensed Matter Nucl. Sci. 14, (2014), p 29 www.iscmns.org/CMNS/JCMNS-Vol14.pdf

Mosier-Boss, P.A. and M. Fleischmann Thermal and Nuclear Aspects of the Pd/D2O System (2)www.lenr-canr.org/acrobat/MosierBossthermalanda.pdf

Mosier-Boss, P.A. and S. Szpak The Metal Hydrogen System: Interphase Participation in H-Transportwww.lenr-canr.org/acrobat/MosierBossthemetalhy.pdf

Mosier-Boss, P.A. and S. Szpak The Pd/(n)H system: transport processes and development of thermal instabilitieswww.lenr-canr.org/acrobat/MosierBossthepdnhsys.pdf

Mosier-Boss, P.A., et al. Pd/D Co-Deposition: Excess Power Generation and Its Origin (paper and PowerPoint slides)www.lenr-canr.org/acrobat/MosierBosspddcodepos.pdf

Mosier-Boss, P.A., et al. Characterization of tracks in CR-39 detectors obtained as a result of Pd/D Co-depositionwww.lenr-canr.org/acrobat/MosierBosscharacteri.pdf

Mosier-Boss, P.A., et al. Thermal and Nuclear Aspects of the Pd/D2O System (1)www.lenr-canr.org/acrobat/MosierBossthermaland.pdf

Mosier-Boss, P.A., et al. Reply to Comment on ‘The Use of CR-39 in Pd/D Co-deposition Experiments’: A Response to Kowalskiwww.lenr-canr.org/acrobat/MosierBossreplytocom.pdf

Mosier-Boss, P.A., et al. Use of CR-39 in Pd/D co-deposition experimentswww.lenr-canr.org/acrobat/MosierBossuseofcrinp.pdf

Mosier-Boss, P.A., S. Szpak, and F. Gordon. Production of High Energy Particles Using the Pd/D Co-Deposition Process (PowerPoint slides)www.lenr-canr.org/acrobat/MosierBossproduction.pdf

Murase A., Takahashi N., et al. TOF-SIMS Investigation on Nuclear Transmutation from Sr to Mo with Deuterium Permeation through Multi-layered Pd/CaOJ. Condensed Matter Nucl. Sci. 6, (2012), p 34 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Murthy, T.S., et al. Tritium Analysis of Samples Obtained from Various Electrolysis Experiments at BARCwww.lenr-canr.org/acrobat/MurthyTStritiumana.pdf

Nagel D. Characteristics and Energetics of Craters in LENR Experimental MaterialsJ. Condensed Matter Nucl. Sci. 10, (2013), p 1 www.iscmns.org/CMNS/JCMNS-Vol10.pdf

Nagel D. Evidence from LENR Experiments for Bursts of Heat, Sound, EM Radiation and Particles and for Micro-explosionsJ. Condensed Matter Nucl. Sci. 13, (2014), p 443 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Nagel D., Swanson R. A. LENR Excess Heat may not be Entirely from Nuclear ReactionsJ. Condensed Matter Nucl. Sci. 15, (2015), p 279 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Nagel D. J. Hot and Cold Fusion for Energy GenerationJ. Condensed Matter Nucl. Sci. 4, (2011), p 1 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Nagel D. J., Moser A.E., et al. High Energy Density and Power Density Events in Lattice-enabled Nuclear Reaction Experiments and GeneratorsJ. Condensed Matter Nucl. Sci. 19, (2016), p 1 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Nagel, D.J. Powers, Materials and Radiations from Low Energy Nuclear Reactions on SurfacesProc. ICCF13 (2007), www.lenr-canr.org/acrobat/NagelDJpowersmate.pdf

Nagel, D.J. The Case for LENR At or Near Surfaces: More Experimental Evidence (PowerPoint slides)www.lenr-canr.org/acrobat/NagelDJthecasefor.pdf

Nagel, D.J. Scientific Overview of ICCF15www.lenr-canr.org/acrobat/NagelDJscientific.pdf

Nagel, D.J. Fusion Physics and Philosophywww.lenr-canr.org/acrobat/NagelDJfusionphys.pdf

Nagel, D.J. and M.A. Imam. Energetics Of Defects And Strains In PalladiumProc. ICCF10 (2003), www.lenr-canr.org/acrobat/NagelDJenergetics.pdf

Naitoh K., Tuschiya J. Fundamental Experimental Tests toward Future Cold Fusion Engine Based on Pointcompression due to Supermulti-jets Colliding with Pulse (Fusine)J. Condensed Matter Nucl. Sci. 24, (2017), p 236 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Narayanaswamy C.R. Observation of Anomalous Production of Si and Fe in an Arc Furnace Driven Ferro Silicon Smelting Plant at levels of Tons per dayJ. Condensed Matter Nucl. Sci. 24, (2017), p 244 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Narita S., Neichi K., et al. Evaluation of Uncertainties in Measurement of Isotopic Abundance by Semi-quantitative Analysis with TOF-SIMSJ. Condensed Matter Nucl. Sci. 11, (2013), p 93 www.iscmns.org/CMNS/JCMNS-Vol11.pdf

Narita, S., et al. Gamma Ray Detection and Surface Analysis on Palladium Electrode in DC Glow-like Discharge ExperimentProc. ICCF10 (2003), www.lenr-canr.org/acrobat/NaritaSgammarayde.pdf

Nassisi V., Carettom G., et al. Modification of Pd蓬2 and Pd縫2 Thin Films Processed by He鋒e LaserJ. Condensed Matter Nucl. Sci. 5, (2011), p 1 www.iscmns.org/CMNS/JCMNS-Vol5.pdf

Nayar, M.G., et al. Preliminary Results Of Cold Fusion Studies Using A Five Module High Current Electrolytic Cellwww.lenr-canr.org/acrobat/NayarMGpreliminar.pdf

Neuville S. Perspective on Low Energy Bethe Nuclear Fusion Reactor with Quantum Electronic Atomic Rearrangement of CarbonJ. Condensed Matter Nucl. Sci. 23, (2017), p 91 www.iscmns.org/CMNS/JCMNS-Vol23.pdf

Nezu S., Sanu T. Measurements of Hydrogen Loading Ratio of Pd Electrodes Cathodically Polarized in Aqueous SolutionsProc. ICCF4 2, (1993), p 415 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Nohmi T., Sasaki Y., et al. Basic Research on Condensed Matter Nuclear Reaction Using Pd Powders Charged With High Density DeuteriumProc. ICCF14 1, (2008), p 400 www.iscmns.org/iccf14/ProcICCF14a.pdf

Notoya R. Alkali-Hydrogen Cold Fusion Accompanied with Tritium Production on NickelProc. ICCF4 3, (1993), p 13 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

NREL Energy Overview from NRELwww.lenr-canr.org/acrobat/NRELenergyover.pdf

Ogawa, H., et al. Correlation of Excess Heat and Neutron Emission in Pd-Li-D Electrolysiswww.lenr-canr.org/acrobat/OgawaHcorrelatio.pdf

Ohmori, T. and M. Enyo Iron Formation in Gold and Palladium Cathodeswww.lenr-canr.org/acrobat/OhmoriTironformat.pdf

Ohta, M. and A. Takahashi. Analysis of Nuclear Transmutation Induced from Metal Plus Multibody-Fusion-Products ReactionProc. ICCF10 (2003), www.lenr-canr.org/acrobat/OhtaManalysisof.pdf

Ohta, M. and A. Takahashi. Analysis Of Nuclear Transmutation Induced From Metal Plus Multibody-Fusion-Products, Reaction (PowerPoint slides)Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/OhtaManalysisofa.pdf

Okamoto H., Nezu S. Measurements of Hydrogen Loading Ratio of Pd Anodes Polarized in LiH-LiC1-KCl Molten Salt SystemsProc. ICCF4 2, (1993), p 385 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Okamoto M., Yoshinaga Y., et al. Excess Heat Generation, Voltage Deviation, and Neutron Emission in D20-LiOD SystemsProc. ICCF4 2, (1993), p 71 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Okamoto M., Ogawa H., et al. Behavior of Key Elements in Pd for the Solid State Nuclear Phenomena Occurred in Heavy Water ElectrolysisProc. ICCF4 3, (1993), p 145 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Okamoto, M., et al. Excess Heat Generation, Voltage Deviation, and Neutron Emission in D2O-LiOD Systemswww.lenr-canr.org/acrobat/OkamotoMexcessheata.pdf

Okubo K., Umeno K. Physical Model of Energy Fluctuation DivergenceJ. Condensed Matter Nucl. Sci. 24, (2017), p 252 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Oriani R., Nelson J. C,., et al. Calorimetric Measurements Of Excess Power During The Cathodic Charging Of Deuterium Into PalladiumProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 317 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Oriani R. The Physical and Metallurgical Aspects of Hydrogen in MetalsProc. ICCF4 1, (1993), p 365 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Oriani R. Reproducible Evidence for the Generation of a Nuclear Reaction During ElectrolysisProc. ICCF14 1, (2008), p 250 www.iscmns.org/iccf14/ProcICCF14a.pdf

Oriani R. A. Nuclear Particles Generated by Electrolysis � a ReviewJ. Condensed Matter Nucl. Sci. 6, (2012), p 108 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Oriani, R.A. Anomalous Heavy Atomic Masses Produced by Electrolysiswww.lenr-canr.org/acrobat/OrianiRAanomalousha.pdf

Oriani, R.A. An investigation of anomalous thermal power generation from a proton-conducting oxidewww.lenr-canr.org/acrobat/OrianiRAaninvestig.pdf

Oriani, R.A. and J.C. Fisher Generation of Nuclear Tracks during Electrolysiswww.lenr-canr.org/acrobat/OrianiRAgeneration.pdf

Oriani, R.A. and J.C. Fisher. Detection of Energetic Charged Particles During ElectrolysisProc. ICCF10 (2003), www.lenr-canr.org/acrobat/OrianiRAdetectiono.pdf

Oriani, R.A. and J.C. Fisher. Energetic Charged Particles Produced in the Gas Phase by ElectrolysisProc. ICCF10 (2003), www.lenr-canr.org/acrobat/OrianiRAenergeticc.pdf

Oriani, R.A. and J.C. Fisher. Energetic particle shower in the vapor from electrolysisProc. ICCF11 (2004), www.lenr-canr.org/acrobat/OrianiRAenergeticp.pdf

Oriani, R.A. and J.C. Fisher. Nuclear reactions produced in an operating electrolysis cellProc. ICCF11 (2004), www.lenr-canr.org/acrobat/OrianiRAnuclearrea.pdf

Oriani, R.A., et al. Calorimetric measurements of excess power output during the cathodic charging of deuterium into palladiumwww.lenr-canr.org/acrobat/OrianiRAcalorimetr.pdf

Orondo P., Hagelstein P. I. Basic Physics Model for PdH ThermodynamicsJ. Condensed Matter Nucl. Sci. 13, (2014), p 149 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Osman, F., et al. Supporting the Josephson Interpretation of Low Energy Nuclear Reactions and Stabilization of Nuclear Wastewww.lenr-canr.org/acrobat/OsmanFsupporting.pdf

Ota K., Yoshitake H., et al. Heat Measurement of Water Electrolysis Using Pd Cathode and the ElectrochemistryProc. ICCF4 2, (1993), p 85 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Oya, Y., et al. Material Conditions to Replicate the Generation of Excess Energy and the Emission of Excess Neutronswww.lenr-canr.org/acrobat/OyaYmaterialco.pdf

Oya, Y., et al. The Role of Alkaline Ions in Dynamic Movement of Hydrogen Isotopes in Pdwww.lenr-canr.org/acrobat/OyaYtheroleofa.pdf

Oyama, N., et al. Probing absorption of deuterium into palladium cathodes during D2O electrolysis with an in situ electrochemical microbalance techniquewww.lenr-canr.org/acrobat/OyamaNprobingabs.pdf

P.I. Golubnichiy et al. The Investigation of the Mechanism of Energy Accumulation in Long-Living Lightning Objects, Found after a Powerful Impulse Energy Release in Water,International Symposium on Cold Fusion and Advanced Energy Sources. Minsk(1994), p 221 www.iscmns.org/FIC/CFSB.pdf

Packham, N.J.C., et al. Production of tritium from D2O electrolysis at a palladium cathodewww.lenr-canr.org/acrobat/PackhamNJCproduction.pdf

Paillet J.L., Meulenberg A. Arguments for the Anomalous Solutions of the Dirac EquationsJ. Condensed Matter Nucl. Sci. 18, (2016), p 50 www.iscmns.org/CMNS/JCMNS-Vol18.pdf

Paillet J.L., Meulenberg A. Basis for Electron Deep Orbits of the Hydrogen AtomJ. Condensed Matter Nucl. Sci. 19, (2016), p 230 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Paillet J.L., Meulenberg A. Relativity and Electron Deep Orbits of the Hydrogen AtomJ. Condensed Matter Nucl. Sci. 21, (2016), p 40 www.iscmns.org/CMNS/JCMNS-Vol21.pdf

Paillet J.L., Meulenberg A. Electron Deep Orbits of the Hydrogen AtomJ. Condensed Matter Nucl. Sci. 23, (2017), p 62 www.iscmns.org/CMNS/JCMNS-Vol23.pdf

Paillet J.L., Meulenberg A. Advance on Electron Deep Orbits of the Hydrogen AtomJ. Condensed Matter Nucl. Sci. 24, (2017), p 258 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Park S., Gordon F. Cold Fusion � from the Laboratory to the World. Setting the Stage for ICCF-17J. Condensed Matter Nucl. Sci. 13, (2014), p 1 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Parkhomov A. G., Belousova E.O. Research into Heat Generators Similar to High-temperature Rossi ReactorJ. Condensed Matter Nucl. Sci. 19, (2016), p 244 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Parmenter, R.H. A possible scenario for the onset of cold fusion in deuterated metalswww.lenr-canr.org/acrobat/ParmenterRapossibles.pdf

Parmenter, R.H. Enhancement of Cold Fusion Processes in Palladium by Catalytic Agentswww.lenr-canr.org/acrobat/ParmenterRenhancemen.pdf

Passel T. The Case for Deuteron Stripping with Metal Nuclei as the Source of the Fleischmann鳳ons Excess Heat EffectJ. Condensed Matter Nucl. Sci. 15, (2015), p 288 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Passell, T.O. Pd-110/Pd108 Ratios and Trace Element Changes in Particulate Palladium Exposed to Deuterium GasProc. ICCF10 (2003), www.lenr-canr.org/acrobat/PassellTOpdpdratios.pdf

Passell, T.O. Pd-110/Pd108 Ratios and Trace Element Changes in Particulate Palladium Exposed to Deuterium Gas (PowerPoint slides)Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/PassellTOpdpdratiosa.pdf

Passell, T.O. Radiation data reported by Wolf at Texas A&M as transmitted by T. Passellwww.lenr-canr.org/acrobat/PassellTOradiationd.pdf

Passell, T.O. and R. George. Trace Elements Added to Palladium by Exposure to Gaseous DeuteriumProc. ICCF8 (2000), www.lenr-canr.org/acrobat/PassellTOtraceeleme.pdf

Pease D., Azizi O., et al. Search for Low-energy X-ray and Particle Emissions from an Electrochemical CellJ. Condensed Matter Nucl. Sci. 19, (2016), p 257 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Peter Glueck, Cold Fusion – A Logical Network ApproachInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 86 www.iscmns.org/FIC/CFSB.pdf

Peter L. Hagelstein Probabilistic Models for Beam, Spot, and Line Emission for Collimated X-ray Emission in the Karabut ExperimentJ. Condensed Matter Nucl. Sci. 22, (2017), p 53 www.iscmns.org/CMNS/JCMNS-Vol22.pdf

Pitt W. G., Harb J., et al. Observation Of Neutrons During Electrolysis Of LiOD SolutionsProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 139 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Platt, C. The Wired 25www.lenr-canr.org/acrobat/PlattCthewired.pdf

Platt, C. What If Cold Fusion Is Real?www.lenr-canr.org/acrobat/PlattCwhatifcold.pdf

Plotkin, H. Cold Fusion Rides Again. Science magazine publishes more evidence of tabletop nuclear reactionswww.lenr-canr.org/acrobat/PlotkinHcoldfusion.pdf

Plotkin, H. Power To The People. The return of cold fusionwww.lenr-canr.org/acrobat/PlotkinHpowertothe.pdf

Plotkin, H. The war against cold fusion. What’s realy behind it?www.lenr-canr.org/acrobat/PlotkinHthewaragai.pdf

Prelas M., Lukosi E. Neutron Emission from Cryogenically Cooled Metals Under Thermal ShockJ. Condensed Matter Nucl. Sci. 13, (2014), p 455 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Preparata G. Cold Fusion ’93’: Some Theoretical IdeasProc. ICCF4 1, (1993), p 279 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Preparata G. Comments on the Criticisms of M. RabinowitzProc. ICCF4 1, (1993), p 357 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Prevenslik T. Sonoluminescense. Cold Fusion, and Blue Water LasersProc. ICCF4 4, (1993), p 171 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Prevenslik T. Sonolumnescence, Cold Fusion and Blue Water LasersInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 307 www.iscmns.org/FIC/CFSB.pdf

R.A. Oriani A Brief Survey of Useful Information About Hydrogen in MetalsInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 155 www.iscmns.org/FIC/CFSB.pdf

Rabinowitz M., Kim Y., et al. Opposition and Support for Cold FusionProc. ICCF4 1, (1993), p 345 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Rabinowitz M. Response to G. PreparataProc. ICCF4 1, (1993), p 361 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Rabinowitz R., Worledge D. H. Possible Mechanisms For Fusion In A Solid LatticeProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 574 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Radhakrishnan, T.P., et al. Tritium Generation during Electrolysis Experimentwww.lenr-canr.org/acrobat/Radhakrishtritiumgen.pdf

Raj, P., et al. Search for Nuclear Fusion in Gas Phase Deuteriding of Titanium Metalwww.lenr-canr.org/acrobat/RajPsearchforn.pdf

Rajeev K.P., Gaur D. Evidence for Nuclear Transmutations in Ni蓬 ElectrolysisJ. Condensed Matter Nucl. Sci. 24, (2017), p 278 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Ramamurthy H., Srinivasan M., et al. Further Studies on Excess Heat Generation in Ni-H2 Electrolytic CellsProc. ICCF4 2, (1993), p 225 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Rambaut M. Account of Cold Fusion by Screening and Harmonic Oscillator ResonanceProc. ICCF4 4, (1993), p 275 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Ransford H., Pike S. Apparatus for Safely Extending Cold Fusion Investigations to High Temperature, Pressure, and Input Power RegimesProc. ICCF4 2, (1993), p 297 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Redey L., Myles K. M., et al. Calorimetric Measurements On Electrochemical Cells With Pd-D CathodesProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 488 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Reifenschweiler, O. Some Experiments on the Decrease of Radioactivity of Tritium Sorbed by Titaniumwww.lenr-canr.org/acrobat/Reifenschwsomeexperi.pdf

Reifenschweiler, O. Cold Fusion and Decrease of Tritium Radioactivitywww.lenr-canr.org/acrobat/Reifenschwcoldfusion.pdf

Reifenschweiler, O. Reduced radioactivity of tritium in small titanium particleswww.lenr-canr.org/acrobat/Reifenschwreducedrad.pdf

Ren-bao Lu The X-Ray Emission from Elements of First Period and Cold FusionInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 240 www.iscmns.org/FIC/CFSB.pdf

Rice R., Kim Y., et al. Comments on Exotic Chemistry Models and Deep Dirac States for Cold FusionProc. ICCF4 4, (1993), p 47 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Ritchie B. Compatibility of Hydrino States and Quantum MechanicsJ. Condensed Matter Nucl. Sci. 11, (2013), p 101 www.iscmns.org/CMNS/JCMNS-Vol11.pdf

Ritchie B. Neutrino Equation of Motion and Neutrino貌lectron Bound Pairs in LENRJ. Condensed Matter Nucl. Sci. 12, (2013), p 41 www.iscmns.org/CMNS/JCMNS-Vol12.pdf

Roarty B. P., Walker C. J. Protocol for a Silicate-based LENR Using Electrodes of Various MetalsJ. Condensed Matter Nucl. Sci. 10, (2013), p 30 www.iscmns.org/CMNS/JCMNS-Vol10.pdf

Robert D. Eagleton Experimental Details for Light Water Cold Fusion Res. at Cal. Poly.-PomonaInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 137 www.iscmns.org/FIC/CFSB.pdf

Robert T. Bush An Interpretation of the Piantelli Effect Based upon the LANT Hypothesis and ECFM Model for Cold FusionInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 73 www.iscmns.org/FIC/CFSB.pdf

Robert T. Bush Evidence for an Electrolytically Induced Shift in the Abundance Ratio of SR-88 to SR-86International Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 187 www.iscmns.org/FIC/CFSB.pdf

Robert W. Bass LINT: A Semi-classical Quantized Theory of Lattice Induced Nuclear TransmutationsInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 34 www.iscmns.org/FIC/CFSB.pdf

Robert W. Bass Is the Coulomb Fusion-Barrier a Resonantly-Transparent Mirror? Refutation of the Conventional Cold-Fusion OM-Impossibility ProofInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 47 www.iscmns.org/FIC/CFSB.pdf

Rolison D. R., O’Grady W. E. Mass/Charge Anomalies In Pd After Electrochemical Loading With DeuteriumProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 205 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Rolison, D.R., et al. Anomalies in the Surface Analysis of Deuterated PalladiumProc. ACCF1 (1990), www.lenr-canr.org/acrobat/RolisonDRanomaliesi.pdf

Romodanov V., Savin V., et al. Reproducibility of Tritium Generation From Nuclear Reactions in Condensed MediaProc. ICCF4 3, (1993), p 153 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Romodanov V., Savin V., et al. Concept of Target Material Choice for Nuclear Reactions in Condensed MediaProc. ICCF4 3, (1993), p 221 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Romodanov V., Savin V., et al. Ecological Aspects of Thermal Systems Using Hydrogen IsotopesProc. ICCF4 4, (1993), p 469 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Romodanov, V.A. Tritium Generation During The Interaction Of Plasma Glow Discharge With Metals And Upon Imposing A Magnetic FieldProc. ICCF10 (2003), www.lenr-canr.org/acrobat/RomodanovVtritiumgena.pdf

Rothwell J. The Future May be Better than You ThinkJ. Condensed Matter Nucl. Sci. 13, (2014), p 464 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Rothwell J. Lessons from Cold Fusion Archives and from HistoryJ. Condensed Matter Nucl. Sci. 15, (2015), p 321 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Rothwell, J. A Fusテ」o a Frio e o Futurowww.lenr-canr.org/acrobat/RothwellJafusoafrio.pdf

Rothwell, J. Butter Side Down: How Cold Fusion Researchers Battle the Innate Perversity of Inanimate Objects and Exploding Parameter Spacewww.lenr-canr.org/acrobat/RothwellJbutterside.pdf

Rothwell, J. Cold Fusion And The Futurewww.lenr-canr.org/acrobat/RothwellJcoldfusiona.pdf

Rothwell, J. Cold Fusion, the Titanic Disaster Aftermath, and the Internetwww.lenr-canr.org/acrobat/RothwellJcoldfusion.pdf

Rothwell, J. Comparisons from the History of Technologywww.lenr-canr.org/acrobat/RothwellJcomparison.pdf

Rothwell, J. Introduction to the Cold Fusion Experiments of Dr. Melvin Mileswww.lenr-canr.org/acrobat/RothwellJintroducti.pdf

Rothwell, J. Mirai o kizuku jyouonkakuyuugouwww.lenr-canr.org/acrobat/RothwellJmiraiokizu.pdf

Rothwell, J. Review of McKubre, M. C. H., et al., Development of Advanced Concepts for Nuclear Processes in Deuterated Metals, EPRI TR-104195www.lenr-canr.org/acrobat/RothwellJreviewofmc.pdf

Rothwell, J. Review of Profiles of the Future: An Inquiry into the Limits of the Possible, By Arthur C. Clarkewww.lenr-canr.org/acrobat/RothwellJreviewofpr.pdf

Rothwell, J. Tally of Cold Fusion Paperswww.lenr-canr.org/acrobat/RothwellJtallyofcol.pdf

Rothwell, J. The Wright Brothers and Cold Fusionwww.lenr-canr.org/acrobat/RothwellJthewrightb.pdf

Rothwell, J. Transistors and Cold Fusion – Part Iwww.lenr-canr.org/acrobat/RothwellJtransistor.pdf

Rothwell, J. Transistors and Cold Fusion – Part IIwww.lenr-canr.org/acrobat/RothwellJtransistora.pdf

Rothwell, J. and E. Storms Report on Arata’s Paper and Lecture about his “Solid Fusion” Reactorwww.lenr-canr.org/acrobat/RothwellJreportonar.pdf

Rothwell, J. and E. Storms. The LENR-CANR.Org Website, Its Past And FutureProc. ICCF10 (2003), www.lenr-canr.org/acrobat/RothwellJthelenrcan.pdf

Rothwell, J., et al. Appeal to Readers and Correspondence with the Scientific Americanwww.lenr-canr.org/acrobat/RothwellJappealtore.pdf

Roulette, T., J. Roulette, and S. Pons. Results of ICARUS 9 Experiments Run at IMRA Europewww.lenr-canr.org/acrobat/RouletteTresultsofi.pdf

Roussetski, A.S. Application of CR-39 Plastic Track Detector for Detection of DD and DT-Reaction Products in Cold Fusion ExperimentsProc. ICCF8 (2000), www.lenr-canr.org/acrobat/Roussetskiapplicatio.pdf

Roussetski, A.S. Cr-39 Track Detectors In Cold Fusion Experiments: Review And PerspectivesProc. ICCF11 (2004), www.lenr-canr.org/acrobat/Roussetskicrtrackdet.pdf

Roussetski, A.S., A.G. Lipson, and V.P. Andreanov. Nuclear Emissions from Titanium Hydride/Deuteride, Induced by Powerful Picosecond Laser BeamProc. ICCF10 (2003), www.lenr-canr.org/acrobat/Roussetskinuclearemi.pdf

Rout, R.K., et al. Phenomenon of Low Energy Emission from Hydrogen/Deuterium Loaded Palladiumwww.lenr-canr.org/acrobat/RoutRKphenomenon.pdf

Rout, R.K., et al. Reproducible, anomalous emissions from palladium deuteride/hydridewww.lenr-canr.org/acrobat/RoutRKreproducib.pdf

Rout, R.K., et al. Detection of high tritium activity on the central titanium electrode of a plasma focus devicewww.lenr-canr.org/acrobat/RoutRKdetectiono.pdf

Rout, R.K., et al. Copious low energy emissions from palladium loaded with hydrogen or deuteriumwww.lenr-canr.org/acrobat/RoutRKcopiouslow.pdf

Rout, R.K., M. Srinivasan, and A. Shyam Autoradiography of Deuterated Ti and Pd Targets for Spatially Resolved Detection of Tritium Produced by Cold Fusionwww.lenr-canr.org/acrobat/RoutRKautoradiog.pdf

Rudesill, J. An Interview with Dr. Edmund Stormswww.lenr-canr.org/acrobat/RudesillJanintervie.pdf

Ruer J. Simulation of Crater Formation on LENR Cathodes SurfacesJ. Condensed Matter Nucl. Sci. 12, (2013), p 54 www.iscmns.org/CMNS/JCMNS-Vol12.pdf

Ruer J. Response to Comment on the Article 全imulation of Crater Formation on LENR Cathodes Surfaces�J. Condensed Matter Nucl. Sci. 14, (2014), p 5 www.iscmns.org/CMNS/JCMNS-Vol14.pdf

Ruer J. Characterization of Energy Fluxes in LENR Reactors 胞xcess Heat,Coefficient of Performance and Conditions for Self-sustained OperationJ. Condensed Matter Nucl. Sci. 21, (2016), p 13 www.iscmns.org/CMNS/JCMNS-Vol21.pdf

Ruer J. Basic Design Considerations for Industrial LENR ReactorsJ. Condensed Matter Nucl. Sci. 22, (2017), p 7 www.iscmns.org/CMNS/JCMNS-Vol22.pdf

Ruer J. Simulation of the Behavior of Exotic Neutral Particles by a Monte-Carlo ModelisationJ. Condensed Matter Nucl. Sci. 23, (2017), p 27 www.iscmns.org/CMNS/JCMNS-Vol23.pdf

Rusetskiy A., Bagulya A. V., et al. Investigation of Enhancement and Stimulation of DD-reaction Yields in Crystalline Deuterated Heterostructures at Low Energies using the HELIS Ion AcceleratorJ. Condensed Matter Nucl. Sci. 19, (2016), p 264 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Sakamoto S. Observations of Cold Fusion Neutrons from Condensed MatterProc. ICCF4 3, (1993), p 201 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Sakoh H., Miyoshi Y., et al. Hydrogen Isotope Absorption and Heat Release Characteristics of a Ni-based SampleJ. Condensed Matter Nucl. Sci. 13, (2014), p 471 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Samgin A., Baraboshkin A., et al. The Influence of Conductivity on Neutron Generation Process in Proton Conducting Solid ElectrolytesProc. ICCF4 3, (1993), p 65 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Sankaranarayanan T., Srinivasan M. Investigation of Low Level Tritium Generation in Ni-HZO Electrolytic CellsProc. ICCF4 3, (1993), p 47 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Sankaranarayanan, T.K., et al. Evidence for Tritium Generation in Self-Heated Nickel Wires Subjected to Hydrogen Gas Absorption/Desorption Cycleswww.lenr-canr.org/acrobat/Sankaranarevidencefo.pdf

Sapogin L. I. Deuteron Interaction in Unitary Quantum TheoryProc. ICCF4 4, (1993), p 215 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Sapogin L. II. Deuteron Interaction in Unitary Quantum TheoryProc. ICCF4 4, (1993), p 227 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Sarto F., Castagna E., et al. Microscopic characterization of palladium electrodes for cold fusion experiments8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 252 www.iscmns.org/catania07/ProcW8.pdf

Sarto F., Castagna E., et al. Electrode Surface Morphology Characterization by Atomic Force MicroscopyProc. ICCF14 2, (2008), p 437 www.iscmns.org/iccf14/ProcICCF14b.pdf

Sasaki, Y., et al. Deuterium Gas Charging Experiments with Pd Powders for Excess Heat Evolution (I) Results of absorption experiments using Pd powderswww.lenr-canr.org/acrobat/SasakiYdeuteriumg.pdf

Savrasov A., Prokopenko V., et al. CR-39 Detector Track Characterization in Experiments with Pd/D Co-depositionJ. Condensed Matter Nucl. Sci. 22, (2017), p 1 www.iscmns.org/CMNS/JCMNS-Vol22.pdf

Savvatimova I., Kornilova A., et al. Gamma Emission Evaluation in Tungsten Irradiated By Low Energy Deuterium Ions8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 256 www.iscmns.org/catania07/ProcW8.pdf

Savvatimova I. Transmutation in Tungsten Irradiated By Low Energy Deuterium Ions8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 275 www.iscmns.org/catania07/ProcW8.pdf

Savvatimova I. B. Transmutation of Elements in Low-energy Glow Discharge and the Associated ProcessesJ. Condensed Matter Nucl. Sci. 6, (2012), p 181 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Savvatimova, I. Reproducibility of Experiments in Glow Discharge and Processes Accompanying Deuterium ions BombardmentProc. ICCF8 (2000), www.lenr-canr.org/acrobat/Savvatimovreproducib.pdf

Savvatimova, I. and D. Gavritenkov. Results Of Analysis Of Ti Foil After Glow Discharge With DeuteriumProc. ICCF11 (2004), www.lenr-canr.org/acrobat/Savvatimovresultsofa.pdf

Savvatimova, I. and J. Dash. Emission registration on films during glow discharge experimentsProc. ICCF9 (2002), www.lenr-canr.org/acrobat/Savvatimovemissionre.pdf

Sawada T. A Particle Physicist痴 View on the Nuclear Cold Fusion ReactionJ. Condensed Matter Nucl. Sci. 1, (2007), p 6 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Sawada T. Underlying Mechanism of the Nuclear of Implied by the Energy卜omentum Conservation[ I ]J. Condensed Matter Nucl. Sci. 6, (2012), p 118 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Sawatimova I., Kucherov Y., et al. Cathode Material Change after Deuterium Glow Discharge ExperimentsProc. ICCF4 3, (1993), p 169 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Scaramuzzi, F. Gas loading of deuterium in palladium at low temperaturewww.lenr-canr.org/acrobat/Scaramuzzigasloading.pdf

Scaramuzzi, F. Ten Years of Cold Fusion: An Eye-witness Accountwww.lenr-canr.org/acrobat/Scaramuzzitenyearsof.pdf

Scarborough T. A., Duncan R., et al. The Center to Study Anomalous Heat Effects [AHE] at Texas Tech UniversityJ. Condensed Matter Nucl. Sci. 19, (2016), p 274 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Scholkmann F., Mizuno T., et al. Statistical Analysis of Unexpected Daily Variations in an Electrochemical Transmutation ExperimentJ. Condensed Matter Nucl. Sci. 8, (2012), p 37 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Scholkmann F., Nagel D. Statistical Analysis of Transmutation Data from Low-energy Nuclear Reaction Experiments and Comparison with a Model-based Prediction of Widom and LarsenJ. Condensed Matter Nucl. Sci. 13, (2014), p 485 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Scholkmann F., Nagel D. J. Is the Abundance of Elements in Earth痴 Crust Correlated with LENR Transmutation Rates?J. Condensed Matter Nucl. Sci. 19, (2016), p 281 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Scholkmann F., Nagel D., et al. Electromagnetic Emission in the kHz to GHz Range Associated with Heat Production During Electrochemical Loading of Deuterium into Palladium: A Summary and Analysis of Results Obtained by Different Research GroupsJ. Condensed Matter Nucl. Sci. 19, (2016), p 325 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Schreiber, M., et al. Recent Measurements of Excess Energy Production in Electrochemical Cells Containing Heavy Water and PalladiumProc. ACCF1 (1990), www.lenr-canr.org/acrobat/SchreiberMrecentmeas.pdf

Schwinger J. Cold Fusion Theory. A Brief History of MineProc. ICCF4 4, (1993), p 15 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Schwinger, J. Nuclear Energy in an Atomic LatticeProc. ACCF1 (1990), www.lenr-canr.org/acrobat/SchwingerJnuclearene.pdf

Schwinger, J. Cold fusion: Does it have a future?www.lenr-canr.org/acrobat/SchwingerJcoldfusiona.pdf

Scott, C.D., et al. The Initiation of Excess Power and Possible Products of Nuclear Interactions During the Electrolysis of Heavy WaterProc. ACCF1 (1990), www.lenr-canr.org/acrobat/ScottCDtheinitiat.pdf

Shamoo, A.E. Editorialwww.lenr-canr.org/acrobat/ShamooAEeditorial.pdf

Shanahan, K. A Possible Calorimetric Error in Heavy Water Electrolysis on Platinumwww.lenr-canr.org/acrobat/ShanahanKapossiblec.pdf

Shirakawa T., Fujii M., et al. Particle Acceleration and Neutron Emission in a Fracture Process of a Piezoelectric MateriaiProc. ICCF4 3, (1993), p 73 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Shrikhande, V.K. and K.C. Mittal Deuteration of Machined Titanium Targets for Cold Fusion Experimentswww.lenr-canr.org/acrobat/Shrikhandedeuteratio.pdf

Shyam, A., et al. Observation of High Multiplicity Bursts of Neutrons During Electrolysis of Heavy Water with Palladium Cathode Using the Dead-Time Filtering Techniquewww.lenr-canr.org/acrobat/ShyamAobservatio.pdf

Sinha K., Meulenberg A. A Model for Enhanced Fusion Reaction in a Solid Matrix of Metal DeuteridesProc. ICCF14 2, (2008), p 633 www.iscmns.org/iccf14/ProcICCF14b.pdf

Sinha K. P., Meulenberg A. Lochon-mediated Low-energy Nuclear ReactionslJ. Condensed Matter Nucl. Sci. 6, (2012), p 55 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Sinha K. P., Meulenberg A. Quantum-correlated Fluctuations, Phonon-induced Bond Polarization, Enhanced Tunneling, and Low-energy Nuclear Reactions in Condensed MatterJ. Condensed Matter Nucl. Sci. 8, (2012), p 105 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Songsheng Jiang, Ming He, et al. Observation of 3He and 3H in the volcanic crater lakes: possible evidence for natural nuclear fusion in deep Earth8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 137 www.iscmns.org/catania07/ProcW8.pdf

Spallone A., Marmigi A., et al. A Review of Experimental studies about Hydrogen over-loading within Palladium wires (H/Pd >= 1)8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 289 www.iscmns.org/catania07/ProcW8.pdf

Spallone A. Measurements of Resistance Temperature Coefficient at H/Pd OverloadingsProc. ICCF12 (2005), www.iscmns.org/iccf12/SpalloneA.pdf

Spallone, A., et al. Experimental studies to achieve H/Pd loading ratio close to 1 in thin wires, using different electrolytic solutionsProc. ICCF9 (2002), www.lenr-canr.org/acrobat/SpalloneAexperiment.pdf

Spallone, A., et al. An Overview Of Experimental Studies On H/Pd Over-Loading With Thin Pd Wires And Different Electrolytic SolutionsProc. ICCF11 (2004), www.lenr-canr.org/acrobat/SpalloneAanoverview.pdf

Srinivasan M. Neutron Emission in Bursts and Hot Spots: Signature of Micro-Nuclear Explosions?J. Condensed Matter Nucl. Sci. 4, (2011), p 161 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Srinivasan M. Transmutations and Isotopic Shifts in LENR Experiments. An OverviewJ. Condensed Matter Nucl. Sci. 13, (2014), p 495 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Srinivasan M. Revisiting the Early BARC Tritium ResultsJ. Condensed Matter Nucl. Sci. 15, (2015), p 137 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Srinivasan, M. Meeting Report — Energy Concepts for the 21st Centurywww.lenr-canr.org/acrobat/Srinivasanmeetingrep.pdf

Srinivasan, M. Nuclear fusion in an atomic lattice: An update on the international status of cold fusion researchwww.lenr-canr.org/acrobat/Srinivasannuclearfus.pdf

Srinivasan, M., et al. Statistical Analysis of Neutron Emission in Cold Fusion ExperimentsProc. ACCF1 (1990), www.lenr-canr.org/acrobat/Srinivasanstatistica.pdf

Srinivasan, M., et al. Observation of Tritium in Gas/Plasma Loaded Titanium Sampleswww.lenr-canr.org/acrobat/Srinivasanobservatio.pdf

Storms E., Grimshaw T. W. Judging the Validity of the Fleischmann and Pons EffectJ. Condensed Matter Nucl. Sci. 3, (2010), p 9 www.iscmns.org/CMNS/JCMNS-Vol3.pdf

Storms E., Scanlan B. What is Real about Cold Fusion and What Explanations are Plausible?J. Condensed Matter Nucl. Sci. 4, (2011), p 17 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Storms E. An Explanation of Low-energy Nuclear Reactions (Cold Fusion)J. Condensed Matter Nucl. Sci. 9, (2012), p 86 www.iscmns.org/CMNS/JCMNS-Vol9.pdf

Storms E. The Role of Voids as the Location of LENRJ. Condensed Matter Nucl. Sci. 11, (2013), p 123 www.iscmns.org/CMNS/JCMNS-Vol11.pdf

Storms E., Scanlan B. Nature of Energetic Radiation Emitted from a Metal Exposed to H2J. Condensed Matter Nucl. Sci. 11, (2013), p 142 www.iscmns.org/CMNS/JCMNS-Vol11.pdf

Storms E. Explaining Cold FusionJ. Condensed Matter Nucl. Sci. 15, (2015), p 295 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Storms E. In the Spirit of John BockrisJ. Condensed Matter Nucl. Sci. 16, (2015), p 8 www.iscmns.org/CMNS/JCMNS-Vol16.pdf

Storms E. Anomalous Energy Produced by PdDJ. Condensed Matter Nucl. Sci. 20, (2016), p 81 www.iscmns.org/CMNS/JCMNS-Vol20.pdf

Storms E. How Basic Behavior of LENR can Guide. A Search for an ExplanationJ. Condensed Matter Nucl. Sci. 20, (2016), p 100 www.iscmns.org/CMNS/JCMNS-Vol20.pdf

Storms E., Scanlan B. Radiation Produced By Glow Discharge in Deuterium8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 297 www.iscmns.org/catania07/ProcW8.pdf

Storms E., Talcott C,, et al. Recent Results For Electrolytic Tritium Production At Los AlamosProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 115 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Storms E. Some Characteristics of Heat Production Using the ‘Cold Fusion’ EffectProc. ICCF4 2, (1993), p 77 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Storms E. The Method and Results Using Seebeck CalorimetryProc. ICCF14 1, (2008), p 11 www.iscmns.org/iccf14/ProcICCF14a.pdf

Storms E., Scanlan B. Detection of Radiation Emitted from LENRProc. ICCF14 1, (2008), p 263 www.iscmns.org/iccf14/ProcICCF14a.pdf

Storms E. Critical Review of the Cold Fusion Effect.International Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 159 www.iscmns.org/FIC/CFSB.pdf

Storms, E. Some Thoughts on the Nature of the Nuclear-Active Regions in Palladiumwww.lenr-canr.org/acrobat/StormsEsomethough.pdf

Storms, E. Relationship Between Open-Circuit-Voltage and Heat Production in a Pons-Fleischmann Cellwww.lenr-canr.org/acrobat/StormsErelationsh.pdf

Storms, E. Excess Power Production from Platinum Cathodes Using the Pons-Fleischmann EffectProc. ICCF8 (2000), www.lenr-canr.org/acrobat/StormsEexcesspowe.pdf

Storms, E. How to Make A Cheap and Effective Seebeck CalorimeterProc. ICCF10 (2003), www.lenr-canr.org/acrobat/StormsEhowtomakea.pdf

Storms, E. Use Of A Very Sensitive Seebeck Calorimeter To Study The Pons-Fleischmann And Letts EffectsProc. ICCF10 (2003), www.lenr-canr.org/acrobat/StormsEuseofavery.pdf

Storms, E. Anomalous Heat Generated by Electrolysis Using a Palladium Cathode and Heavy Waterwww.lenr-canr.org/acrobat/StormsEanomaloush.pdf

Storms, E. Ways to Initiate a Nuclear Reaction in Solid Environmentswww.lenr-canr.org/acrobat/StormsEwaystoinit.pdf

Storms, E. A critical evaluation of the Pons-Fleischmann effect: Part 1www.lenr-canr.org/acrobat/StormsEacriticale.pdf

Storms, E. A New Method for Initiating Nuclear Reactionswww.lenr-canr.org/acrobat/StormsEanewmethod.pdf

Storms, E. A Response to the Review of Cold Fusion by the DoEwww.lenr-canr.org/acrobat/StormsEaresponset.pdf

Storms, E. A Student’s Guide to Cold Fusionwww.lenr-canr.org/acrobat/StormsEastudentsg.pdf

Storms, E. A Study of Those Properties of Palladium That Influence Excess Energy Production by the “Pons-Fleischmann” Effectwww.lenr-canr.org/acrobat/StormsEastudyofth.pdf

Storms, E. Anomalous Heat Produced by Electrolysis of Palladium using a Heavy-Water Electrolytewww.lenr-canr.org/acrobat/StormsEanomalousha.pdf

Storms, E. Calorimetry 101 for Cold Fusion; Methods, Problems and Errorswww.lenr-canr.org/acrobat/StormsEcalorimetr.pdf

Storms, E. Cold Fusion for Dummieswww.lenr-canr.org/acrobat/StormsEcoldfusione.pdf

Storms, E. Cold Fusion Revisited (translation into Chinese)www.lenr-canr.org/acrobat/StormsEcoldfusionc.pdf

Storms, E. Cold Fusion: An Objective Assessmentwww.lenr-canr.org/acrobat/StormsEcoldfusiond.pdf

Storms, E. Description of a dual calorimeterwww.lenr-canr.org/acrobat/StormsEdescriptio.pdf

Storms, E. Fusテ」o a Frio para Principianteswww.lenr-canr.org/acrobat/StormsEfusoafriop.pdf

Storms, E. How to Cause Nuclear Reactions at Low Energy and Why Should You Care (PowerPoint slides from video)www.lenr-canr.org/acrobat/StormsEhowtocausea.pdf

Storms, E. My life with cold fusion as a reluctant mistresswww.lenr-canr.org/acrobat/StormsEmylifewith.pdf

Storms, E. Student’s Guide to Cold Fusionwww.lenr-canr.org/acrobat/StormsEestudiodel.pdf

Storms, E. Student’s Guide to Cold Fusionwww.lenr-canr.org/acrobat/StormsEestudodafu.pdf

Storms, E. The Nature of the Nuclear-Active-Environment Required for Low Energy Nuclear Reactionswww.lenr-canr.org/acrobat/StormsEthenatureo.pdf

Storms, E. The Science Of Low Energy Nuclear Reactionwww.lenr-canr.org/acrobat/StormsEthescience.pdf

Storms, E. The US Government Once Again Evaluates Cold Fusionwww.lenr-canr.org/acrobat/StormsEtheusgover.pdf

Storms, E. What Conditions Are Required To Initiate The Lenr Effect?www.lenr-canr.org/acrobat/StormsEwhatcondit.pdf

Storms, E. What is believed about cold fusion?www.lenr-canr.org/acrobat/StormsEwhatisbeli.pdf

Storms, E. Why Cold Fusion Has Been So Hard to Explain and Duplicatewww.lenr-canr.org/acrobat/StormsEwhycoldfus.pdf

Storms, E. Why I believe “Cold Fusion” is Realwww.lenr-canr.org/acrobat/StormsEwhyibeliev.pdf

Storms, E. Formation of b-PdD Containing High Deuterium Concentration Using Electrolysis of Heavy-Waterwww.lenr-canr.org/acrobat/StormsEformationo.pdf

Storms, E. Comment on papers by K. Shanahan that propose to explain anomalous heat generated by cold fusionwww.lenr-canr.org/acrobat/StormsEcommentonp.pdf

Storms, E. Measurements of excess heat from a Pons-Fleischmann-type electrolytic cell using palladium sheetwww.lenr-canr.org/acrobat/StormsEmeasuremena.pdf

Storms, E. How to produce the Pons-Fleischmann effectwww.lenr-canr.org/acrobat/StormsEhowtoprodu.pdf

Storms, E. and B. Scanlan. Role of cluster formation in the LENR processProc. ICCF15 (2009), www.lenr-canr.org/acrobat/StormsEroleofclus.pdf

Storms, E. and B. Scanlan. Radiation produced by glow discharge in a deuterium containing gas (Part 2)www.lenr-canr.org/acrobat/StormsEradiationpa.pdf

Storms, E. and C. Talcott-Storms The effect of hydriding on the physical structure of palladium and on the release of contained tritiumwww.lenr-canr.org/acrobat/StormsEtheeffecto.pdf

Storms, E. and C.L. Talcott Electrolytic tritium productionwww.lenr-canr.org/acrobat/StormsEelectrolyt.pdf

Storms, E. and C.L. Talcott. A Study of Electrolytic Tritium ProductionProc. ACCF1 (1990), www.lenr-canr.org/acrobat/StormsEastudyofel.pdf

Stringham R. Model for SonofusionJ. Condensed Matter Nucl. Sci. 4, (2011), p 304 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Stringham R. Sonofusion: Ultrasound-Activated He Production in Circulating D2OJ. Condensed Matter Nucl. Sci. 14, (2014), p 79 www.iscmns.org/CMNS/JCMNS-Vol14.pdf

Stringham R. Helium Measurements From Target Foils, LANL and PNNL, 1994J. Condensed Matter Nucl. Sci. 24, (2017), p 284 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Stringham R. Bubble Driven FusionProc. ICCF14 2, (2008), p 411 www.iscmns.org/iccf14/ProcICCF14b.pdf

Stringham R. S. When Bubble Cavitation becomes SonofusionJ. Condensed Matter Nucl. Sci. 6, (2012), p 1 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Stringham R. S. Model for Electromagnetic pulsed BEC ExperimentsJ. Condensed Matter Nucl. Sci. 8, (2012), p 75 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Stringham R. S. Sonofusion痴 Transient Condensate ClustersJ. Condensed Matter Nucl. Sci. 13, (2014), p 505 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Stringham R. S. Conservation of E and M, Single Cavitation Heat EventsJ. Condensed Matter Nucl. Sci. 15, (2015), p 55 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Stringham, R. Pinched cavitation jets and fusion eventsProc. ICCF9 (2002), www.lenr-canr.org/acrobat/StringhamRpinchedcav.pdf

Stringham, R. Cavitation and Fusion – poster sessionProc. ICCF10 (2003), www.lenr-canr.org/acrobat/StringhamRcavitationb.pdf

Stringham, R. Low Mass 1.6 MHz Sonofusion ReactorProc. ICCF11 (2004), www.lenr-canr.org/acrobat/StringhamRlowmassmhz.pdf

Stringham, R. Ejecta Sites and DD Fusion Eventswww.lenr-canr.org/acrobat/StringhamRejectasite.pdf

Stringham, R. 1.6 MHz Sonofusion Measurement and Modelwww.lenr-canr.org/acrobat/StringhamRmhzsonofus.pdf

Swartz M., Verner, G., et al. Amplification and Restoration of Energy Gain Using Fractionated Magnetic Fields on ZrO2鳳dD Nanostructured ComponentsJ. Condensed Matter Nucl. Sci. 15, (2015), p 66 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Swartz M., Verner, G., et al. Imaging of an Active NANORョ-type LANR Component using CR-39J. Condensed Matter Nucl. Sci. 15, (2015), p 81 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Swartz M. Incremental High Energy Emission from a ZrO2鳳dD Nanostructured Quantum Electronic Component CF/LANRJ. Condensed Matter Nucl. Sci. 15, (2015), p 92 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Swartz M. Entrepreneurial Efforts: Cold Fusion Research at JET Energy Leads to Innovative, Dry ComponentsJ. Condensed Matter Nucl. Sci. 15, (2015), p 102 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Swartz M. A Method to Improve Algorithms Used to Detect Steady State Excess EnthalpyProc. ICCF4 2, (1993), p 257 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Swartz M. Some Lessons from Optical Examination of the PFC Phase-II Calorimetric CurvesProc. ICCF4 2, (1993), p 283 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Swartz M. Isotopic Fuel Loading Coupled to Reactions at an ElectrodeProc. ICCF4 2, (1993), p 429 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Swartz M. Catastrophic Active Medium (CAM) Theory of Cold FusionProc. ICCF4 4, (1993), p 255 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Swartz M. Excess Power Gain using High Impedance and Codepositional LANR DevicesMonitored by Calorimetry, Heat Flow, and Paired Stirling EnginesProc. ICCF14 1, (2008), p 123 www.iscmns.org/iccf14/ProcICCF14a.pdf

Swartz M., Verner G., et al. Non-Thermal Near-IR Emission from High Impedance and Codeposition LANR DevicesProc. ICCF14 1, (2008), p 343 www.iscmns.org/iccf14/ProcICCF14a.pdf

Swartz M., Verner G. The Phusor-type LANR Cathode is a Metamaterial Creating Deuteron Flux for Excess Power GainProc. ICCF14 2, (2008), p 458 www.iscmns.org/iccf14/ProcICCF14b.pdf

Swartz M. Optimal Operating Point Manifolds in Active, Loaded Palladium Linked to Three Distinct Physical RegionsProc. ICCF14 2, (2008), p 639 www.iscmns.org/iccf14/ProcICCF14b.pdf

Swartz M., Forsley L. Analysis and Confirmation of the ‘Superwave-as-Transitory飽OP-Peak’ HypothesisProc. ICCF14 2, (2008), p 653 www.iscmns.org/iccf14/ProcICCF14b.pdf

Swartz M. Generalized Isotopic Fuel Loading EquationsInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 164 www.iscmns.org/FIC/CFSB.pdf

Swartz M. R. Impact of an Applied Magnetic Field on a High Impedance Dual Anode LANR DeviceJ. Condensed Matter Nucl. Sci. 4, (2011), p 93 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Swartz M. R. LANR Nanostructures and Metamaterials Driven at their Optimal Operating PointJ. Condensed Matter Nucl. Sci. 6, (2012), p 149 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Swartz M. R., Hagelstein P. I. Demonstration of Energy Gain from a Preloaded ZrO2鳳dD Nanostructured CF/LANR Quantum Electronic Device at MITJ. Condensed Matter Nucl. Sci. 13, (2014), p 516 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Swartz M. R., Verner G., et al. Energy Gain From Preloaded ZrO2鳳dNi縫 Nanostructured CF/LANR Quantum Electronic ComponentsJ. Condensed Matter Nucl. Sci. 13, (2014), p 528 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Swartz M. R., Verner G., et al. Impact of Electrical Avalanche through a ZrO2鋒iD Nanostructured CF/LANR Component on its Incremental Excess Power GainJ. Condensed Matter Nucl. Sci. 19, (2016), p 287 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Swartz M. R. Optical Detection of Phonon Gain Distinguishes an Active Cold Fusion/LANR component (3)J. Condensed Matter Nucl. Sci. 20, (2016), p 29 www.iscmns.org/CMNS/JCMNS-Vol20.pdf

Swartz M. R. Oscillating Excess Power Gain and Magnetic Domains in NANORョ-type CF/LANR ComponentsJ. Condensed Matter Nucl. Sci. 22, (2017), p 35 www.iscmns.org/CMNS/JCMNS-Vol22.pdf

Swartz M.R., Hagelstein P.L. Increased PdD anti-Stokes Peaks are Correlated with Excess Heat ModeJ. Condensed Matter Nucl. Sci. 24, (2017), p 130 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Swartz M.R. Quasiparticles, Collective Excitations and Higher-order Collective Quasi-excitations in Lattice Assisted Nuclear ReactionsJ. Condensed Matter Nucl. Sci. 25, (2017), p 26 www.iscmns.org/CMNS/JCMNS-Vol25.pdf

Szpak S., Dea J. Evidence for the Induction of Nuclear Activity in Polarized Pd/H蓬2O SystemJ. Condensed Matter Nucl. Sci. 9, (2012), p 21 www.iscmns.org/CMNS/JCMNS-Vol9.pdf

Szpak S., Gordon F. The Fleischmann鳳ons Effect: Reactions and ProcessesJ. Condensed Matter Nucl. Sci. 12, (2013), p 143 www.iscmns.org/CMNS/JCMNS-Vol12.pdf

Szpak S., Gordon F. Forcing the Pd/1H�1H2O System into a Nuclear Active StateJ. Condensed Matter Nucl. Sci. 13, (2014), p 543 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Szpak S., Gordon F. On the Mechanism of Tritium Production in Electrochemical CellsJ. Condensed Matter Nucl. Sci. 14, (2014), p 61 www.iscmns.org/CMNS/JCMNS-Vol14.pdf

Szpak S. The Pd + D Co-Deposition: Process, Product, PerformanceJ. Condensed Matter Nucl. Sci. 14, (2014), p 68 www.iscmns.org/CMNS/JCMNS-Vol14.pdf

Szpak S., Gordon F. Cathode to Electrolyte Transfer of Energy Generated in the Fleischmann鳳ons ExperimentJ. Condensed Matter Nucl. Sci. 14, (2014), p 76 www.iscmns.org/CMNS/JCMNS-Vol14.pdf

Szpak S. On the Path Leading To The Fleischmann鳳ons EffectJ. Condensed Matter Nucl. Sci. 17, (2015), p 91 www.iscmns.org/CMNS/JCMNS-Vol17.pdf

Szpak, S. and P.A. Mosier-Boss Anomalous Behavior of the Pd/D Systemwww.lenr-canr.org/acrobat/SzpakSanomalousb.pdf

Szpak, S. and P.A. Mosier-Boss Calorimetry of Open Electrolysis Cellswww.lenr-canr.org/acrobat/SzpakScalorimetr.pdf

Szpak, S. and P.A. Mosier-Boss Nuclear and Thermal Events Associated with Pd + D Codepositionwww.lenr-canr.org/acrobat/SzpakSnuclearand.pdf

Szpak, S. and P.A. Mosier-Boss On the release of n/1H from cathodically polarized palladium electrodeswww.lenr-canr.org/acrobat/SzpakSontherelea.pdf

Szpak, S., et al. Polarized D+/Pd-D2O System: Hot Spots and 窶廴ini-Explosions窶�Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/SzpakSpolarizedda.pdf

Szpak, S., et al. Polarized D+/Pd-D2O System: Hot Spots and 窶廴ini-Explosions窶�; (PowerPoint slides)Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/SzpakSpolarizedd.pdf

Szpak, S., et al. Evidence of nuclear reactions in the Pd latticewww.lenr-canr.org/acrobat/SzpakSevidenceof.pdf

Szpak, S., et al. SPAWAR Systems Center-Pacific Pd:D Co-Deposition Research: Overview of Refereed LENR Publicationswww.lenr-canr.org/acrobat/SzpakSspawarsyst.pdf

Szpak, S., et al. Cyclic voltammetry of Pd + D codepositionwww.lenr-canr.org/acrobat/SzpakScyclicvolt.pdf

Szpak, S., et al. On the behavior of the Pd/D system: Evidence for tritium productionwww.lenr-canr.org/acrobat/SzpakSonthebehavc.pdf

Szpak, S., et al. Thermal behavior of polarized Pd/D electrodes prepared by co-depositionwww.lenr-canr.org/acrobat/SzpakSthermalbeh.pdf

Szpak, S., et al. Electrochemical charging of Pd rodswww.lenr-canr.org/acrobat/SzpakSelectroche.pdf

Szpak, S., et al. The effect of an external electric field on surface morphology of co-deposited Pd/D filmswww.lenr-canr.org/acrobat/SzpakStheeffecto.pdf

Szpak, S., P.A. Mosier-Boss, and C.J. Gabriel Absorption of deuterium in palladium rods: Model vs. experimentwww.lenr-canr.org/acrobat/SzpakSabsorption.pdf

Szpak, S., P.A. Mosier-Boss, and F. Gordon Further evidence of nuclear reactions in the Pd lattice: emission of charged particleswww.lenr-canr.org/acrobat/SzpakSfurtherevi.pdf

Szpak, S., P.A. Mosier-Boss, and F. Gordon. Precursors And The Fusion Reactions In Polarised Pd/D-D2O System: Effect Of An External Electric FieldProc. ICCF11 (2004), www.lenr-canr.org/acrobat/SzpakSprecursors.pdf

Szpak, S., P.A. Mosier-Boss, and F. Gordon. Precursors And The Fusion Reactions In Polarised Pd/D-D2O System: Effect Of An External Electric Field (PowerPoint slides)Proc. ICCF11 (2004), www.lenr-canr.org/acrobat/SzpakSprecursorsa.pdf

Szpak, S., P.A. Mosier-Boss, and F. Gordon. Experimental Evidence for LENR in a Polarized Pd/D Lattice (PowerPoint slides)www.lenr-canr.org/acrobat/SzpakSexperiment.pdf

Szpak, S., P.A. Mosier-Boss, and J.J. Smith Deuterium uptake during Pd-D codepositionwww.lenr-canr.org/acrobat/SzpakSdeuteriumu.pdf

Szpak, S., P.A. Mosier-Boss, and J.J. Smith On the behavior of Pd deposited in the presence of evolving deuteriumwww.lenr-canr.org/acrobat/SzpakSonthebehav.pdf

Szpak, S., P.A. Mosier-Boss, and J.J. Smith On the behavior of the cathodically polarized Pd/D system: Search for emanating radiationwww.lenr-canr.org/acrobat/SzpakSonthebehavb.pdf

Szpak, S., P.A. Mosier-Boss, and J.J. Smith. Reliable Procedure for the Initiation of the Fleischmann-Pons EffectProc. ACCF2. SIF Conference Proceedings 33. The Science of Cold Fusion. (1991), www.lenr-canr.org/acrobat/SzpakSreliablepr.pdf

Szpak, S., P.A. Mosier-Boss, and J.J. Smith. Comments on Methodology of Excess Tritium Determinationwww.lenr-canr.org/acrobat/SzpakScommentson.pdf

Szpak, S., P.A. Mosier-Boss, and M. Miles Calorimetry of the Pd+D codepositionwww.lenr-canr.org/acrobat/SzpakScalorimetra.pdf

Szpak, S., P.A. Mosier-Boss, and R.D. Boss Comments on the analysis of tritium content in electrochemical cellswww.lenr-canr.org/acrobat/SzpakScommentsona.pdf

Szpak, S., P.A. Mosier-Boss, and S.R. Scharber Charging of the Pd/(n)H system: role of the interphasewww.lenr-canr.org/acrobat/SzpakSchargingof.pdf

Szu H. Nuclear Fission Generated By A High Power Neutron Beam Shot Through A Cylindrical Palladium Lattice Packed Densely With Deuteron FuelProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 650 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Szumski D. Si Nickel Transmutation and Excess Heat Model using Reversible ThermodynamicsJ. Condensed Matter Nucl. Sci. 13, (2014), p 554 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Tadayoshi Ohmori, Michio Enyo Detection of Iron Atoms on Gold Electrodes Used for Electrolysis of Neutral and Alkaline H2O and D2O SolutionsInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 247 www.iscmns.org/FIC/CFSB.pdf

Taft S. L., Marwan J. The Open Gate Phenomenon: A New Energy TechnologyJ. Condensed Matter Nucl. Sci. 6, (2012), p 77 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Takahashi A., Kitamura A., et al. Anomalous Exothermic and Endothermic Data Observed by Nano-Ni-Composite SamplesJ. Condensed Matter Nucl. Sci. 15, (2015), p 23 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Takahashi A. Deuteron Cluster Fusion and ASHJ. Condensed Matter Nucl. Sci. 1, (2007), p 62 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Takahashi A. TSC-Induced Nuclear Reactions and Cold Transmutations J. Condensed Matter Nucl. Sci. 1, (2007), p 86 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Takahashi A., Yabuuchi N. On Condensation Force of TSCJ. Condensed Matter Nucl. Sci. 1, (2007), p 97 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Takahashi A. Fusion Rates of Bosonized CondensatesJ. Condensed Matter Nucl. Sci. 1, (2007), p 106 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Takahashi A. A Theoretical Summary of Condensed Matter Nuclear EffectsJ. Condensed Matter Nucl. Sci. 1, (2007), p 129 www.iscmns.org/CMNS/JCMNS-Vol1.pdf

Takahashi A. Dynamic Mechanism of TSC Condensation MotionJ. Condensed Matter Nucl. Sci. 2, (2009), p 33 www.iscmns.org/CMNS/JCMNS-Vol2.pdf

Takahashi A. Progress in Condensed Cluster Fusion TheoryJ. Condensed Matter Nucl. Sci. 4, (2011), p 269 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Takahashi A., Seto R., et al. Role of PdO Surface-coating in CMNS D(H)-Gas Loading ExperimentsJ. Condensed Matter Nucl. Sci. 5, (2011), p 17 www.iscmns.org/CMNS/JCMNS-Vol5.pdf

Takahashi A. Are Ni + H Nuclear Reactions Possible?J. Condensed Matter Nucl. Sci. 9, (2012), p 108 www.iscmns.org/CMNS/JCMNS-Vol9.pdf

Takahashi A. Physics of Cold Fusion by TSC TheoryJ. Condensed Matter Nucl. Sci. 13, (2014), p 565 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Takahashi A. Nuclear Products of Cold Fusion by TSC TheoryJ. Condensed Matter Nucl. Sci. 15, (2015), p 11 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Takahashi A. Fundamental of Rate Theory for CMNSJ. Condensed Matter Nucl. Sci. 19, (2016), p 298 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Takahashi A., Yabuuchi N. D-Cluster Dynamics and Fusion Rate by Langevin Equation8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 306 www.iscmns.org/catania07/ProcW8.pdf

Takahashi A. Some Considerations of Multibody Fusion in Metal DeuteridesProc. ICCF4 4, (1993), p 159 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Takahashi A. The Italy-Japan Project – Fundamental Research on Cold Transmutation Process for Treatment of Nuclear Wastes Proc. ICCF12 (2005), www.iscmns.org/iccf12/TakahashiA-2.pdf

Takahashi A. Time-Dependent EQPET Analysis of TSCProc. ICCF12 (2005), www.iscmns.org/iccf12/TakahashiA-3.pdf

Takahashi A. Dynamic Mechanism of TSC Condensation MotionProc. ICCF14 2, (2008), p 663 www.iscmns.org/iccf14/ProcICCF14b.pdf

Takahashi N., Kosaka Si, et al. Detection of Pr in Cs Ion-implanted Pd/CaO Multilayer Complexes with and without D2 Gas PermeationJ. Condensed Matter Nucl. Sci. 13, (2014), p 579 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Takahashi R. Cold Fusion Explained by Negentropy Theory of Microdrop of Heavy WaterProc. ICCF4 4, (1993), p 317 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Takahashi, A. A Theoretical Summary of Condensed Matter Nuclear Effects6th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Siena, Italy. (2005), www.lenr-canr.org/acrobat/TakahashiAatheoretic.pdf

Takahashi, A. Tetrahedral And Octahedral Resonance Fusion Under Transient Condensation Of Deuterons At Lattice Focal PointsProc. ICCF9 (2002), www.lenr-canr.org/acrobat/TakahashiAtetrahedra.pdf

Takahashi, A. Mechanism Of Deuteron Cluster Fusion By EQPET ModelProc. ICCF10 (2003), www.lenr-canr.org/acrobat/TakahashiAmechanismo.pdf

Takahashi, A. Studies on 3D Fusion Reactions in TiDx under Ion Beam Implantation (PowerPoint slides)Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/TakahashiAstudiesonda.pdf

Takahashi, A. Theoretical Background for Transmutation Reactions (PowerPoint slides)Proc. ICCF10 (2003), www.lenr-canr.org/acrobat/TakahashiAtheoretica.pdf

Takahashi, A. 3He/4He Production Ratios By Tetrahedral Symmetric CondensationProc. ICCF11 (2004), www.lenr-canr.org/acrobat/TakahashiAheheproduc.pdf

Takahashi, A. Deuterons-to-4He Channels (PowerPoint slides)Proc. ICCF13 (2007), www.lenr-canr.org/acrobat/TakahashiAdeuteronst.pdf

Takahashi, A. Condensed Matter Nuclear Effectswww.lenr-canr.org/acrobat/TakahashiAcondensedm.pdf

Takahashi, A. Dynamic Mechanism of TSC Condensation Motionwww.lenr-canr.org/acrobat/TakahashiAdynamicmeca.pdf

Takahashi, A. Zwww.lenr-canr.org/acrobat/TakahashiAproductiona.pdf

Takahashi, A., et al. Anomalous Excess Heat by D2O/Pd Cell Under L-H Mode Electrolysiswww.lenr-canr.org/acrobat/TakahashiAanomalouse.pdf

Takahashi, A., et al. Studies on 3D Fusion Reactions in TiDx under Ion Beam ImplantationProc. ICCF10 (2003), www.lenr-canr.org/acrobat/TakahashiAstudiesond.pdf

Takahashi, A., et al. Deuterium Gas Charging Experiments with Pd Powders for Excess Heat Evolution (II) Discussions on Experimental Results and Underlying Physicswww.lenr-canr.org/acrobat/TakahashiAdeuteriumg.pdf

Takahashi, A., et al. Excess heat and nuclear products by D2O/Pd electrolysis and multibody fusionwww.lenr-canr.org/acrobat/TakahashiAexcessheat.pdf

Talcott C., Storms E., et al. Tritium Measurement: Methods, Pitfalls, And ResultsProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 264 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Tanabe K. Plasmonic Concepts for Condensed Matter Nuclear FusionJ. Condensed Matter Nucl. Sci. 24, (2017), p 296 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Tanaka, T. and S. Himeno. A possible enhancement mechanismProc. ICCF9 (2002), www.lenr-canr.org/acrobat/TanakaTapossiblee.pdf

Taniguchi R. Characteristic Peak Structures on Charged Particle Spectra During Electrolysis ExperimentProc. ICCF4 3, (1993), p 193 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Taniguchi, R., T. Yamamoto, and S. Irie Detection of charged particles emitted by electrolytically induced cold nuclear fusionwww.lenr-canr.org/acrobat/TaniguchiRdetectiono.pdf

Tanzella F., Bao J., et al. Stimulation of Metal DeuterideWires at Cryogenic TemperaturesJ. Condensed Matter Nucl. Sci. 8, (2012), p 176 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Tanzella F., Bao J., et al. Seeking X-rays and Charge Emission from a Copper Foil Driven at MHz FrequenciesJ. Condensed Matter Nucl. Sci. 19, (2016), p 110 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Tanzella F., Godes R., et al. Controlled Electron Capture: Enhanced Stimulation and Calorimetry MethodsJ. Condensed Matter Nucl. Sci. 24, (2017), p 301 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Tanzella F.L., J. Bao J., et al. Cryogenic Calorimetry of ‘Exploding’ PdDx WiresJ. Condensed Matter Nucl. Sci. 6, (2012), p 90 www.iscmns.org/CMNS/JCMNS-Vol6.pdf

Tanzella, F.L., et al. Parameters affecting the loading of hydrogen isotopes into palladium cathodeswww.lenr-canr.org/acrobat/TanzellaFLparameters.pdf

Taylor S., Claytor T., et al. Search for Neutrons from Deuterided Palladium Subject to High Electrical CurrentsProc. ICCF4 3, (1993), p 181 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Teller E Remarks Of Dr. Edward Teller: Anomalous Effects On Deuterided Metal Proceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 19 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Teller E. The Meshuganon. Catalytic Neutron Transfer?Proceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 483 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

This is a short summary of Feder, T. DOE Warms to Cold Fusionwww.lenr-canr.org/acrobat/FederTdoewarmsto.pdf

Tian J., Bingjun Shen B., et al. Excess Heat Triggered by Different Current in a D/Pd Gas-loading SystemJ. Condensed Matter Nucl. Sci. 13, (2014), p 586 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Tian J., Jin H., et al. Excess Heat Triggering by 532 nm Laser in a D/Pd Gas-Loading SystemProc. ICCF14 1, (2008), p 328 www.iscmns.org/iccf14/ProcICCF14a.pdf

Tian, J., et al. “Excess heat” and “heat after death” in a gas loading hydrogen/palladium systemProc. ICCF9 (2002), www.lenr-canr.org/acrobat/TianJexcessheat.pdf

Tian, J., et al. Anomalous heat flow and its correlation with deuterium flux in a gas-loading deuterium-palladium systemProc. ICCF9 (2002), www.lenr-canr.org/acrobat/TianJanomaloush.pdf

Tian, J., et al. Heat Measurements And Surface Studies Of Pd Wires After Being Exposed To A H2 Gas-Loading System Irradiated With A YAG Frequency Doubling LaserProc. ICCF13 (2007), www.lenr-canr.org/acrobat/TianJheatmeasur.pdf

Toimela T. Theoretical Study of the Transmutation ReactionsJ. Condensed Matter Nucl. Sci. 19, (2016), p 316 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Toimela T. Multiple Resonance Scattering8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 328 www.iscmns.org/catania07/ProcW8.pdf

Toimela, T. Effective Interaction Potential in the Deuterium Plasma and Multiple Resonance ScatteringProc. ICCF11 (2004), www.lenr-canr.org/acrobat/ToimelaTeffectivei.pdf

Toriyabe Y. Elemental Analysis on Palladium Electrodes after Pd/Pd Light Water Critical ElectrolysisProc. ICCF12 (2005), www.iscmns.org/iccf12/ToriyabeY.pdf

Toriyabe Y., Kasagi J. Development of New Detector System for Charged Particle EmissionProc. ICCF14 1, (2008), p 310 www.iscmns.org/iccf14/ProcICCF14a.pdf

Tsirlin M. Comment on the Article 全imulation of Crater Formation on LENR Cathodes Surfaces�J. Condensed Matter Nucl. Sci. 14, (2014), p 1 www.iscmns.org/CMNS/JCMNS-Vol14.pdf

Tsirlin M. Concerning the Problem of Searching for the Optimal Palladium CathodeJ. Condensed Matter Nucl. Sci. 25, (2017), p 56 www.iscmns.org/CMNS/JCMNS-Vol25.pdf

Tsuchiya K. A Self-Consistent Iterative Calculation for the Two Species of Charged Bosons Related to the Nuclear Reactions in SolidsJ. Condensed Matter Nucl. Sci. 13, (2014), p 594 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Tsuchiya K., Ohashi K., et al. Mechanism of Cold Fusion IIProc. ICCF4 4, (1993), p 235 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Tsuchiya K. Thermal conduction from the centres of the nuclear reactions in solidsProc. ICCF12 (2005), www.iscmns.org/iccf12/TsuchiyaK.pdf

Tsuchiya K., Watanabe A., et al. Observation of Optical Phonon in Palladium Hydrides Using Raman SpectroscopyProc. ICCF14 1, (2008), p 338 www.iscmns.org/iccf14/ProcICCF14a.pdf

Tsuchiya, K. Quantum states of deuterons in palladiumProc. ICCF10 (2003), www.lenr-canr.org/acrobat/TsuchiyaKquantumsta.pdf

Tsvetkov S. A. Initiation of the Cold Fusion Reactions by Air ComponentsJ. Condensed Matter Nucl. Sci. 8, (2012), p 23 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Tsvetkov, S.A. Possibility Of Using Of Cold Fusion For Nuclear Waste Products TransmutationProc. ICCF10 (2003), www.lenr-canr.org/acrobat/TsvetkovSApossibilit.pdf

Tsvetkov, S.A., E.S. Filatov, and V.A. Khokhlov. EXCESS HEAT IN MOLTEN SALTS OF (LiCl-KCl)+(LiD+LiF) AT THE TITANIUM ANODE DURING ELECTROLYSISProc. ICCF10 (2003), www.lenr-canr.org/acrobat/TsvetkovSAexcessheat.pdf

Tsyganov E.N., Bavizhev M.D., et al. Cold Nuclear Fusion in Metal EnvironmentJ. Condensed Matter Nucl. Sci. 17, (2015), p 96 www.iscmns.org/CMNS/JCMNS-Vol17.pdf

Tuggle D., Claytor T., et al. Tritium Evolution from Various Morphologies of PalladiumProc. ICCF4 1, (1993), p 176 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Uchikawa, H., T. Okazaki, and K. Sato New Technique of Activating Palladium Surface for Absorption of Hydrogen or Deuteriumwww.lenr-canr.org/acrobat/UchikawaHnewtechniq.pdf

Urutskoev L. I., Filippov D. V., et al. Detection of Abnormal Quantity of Hydrogen upon Electrical Explosion of Titanium Foil in a LiquidJ. Condensed Matter Nucl. Sci. 4, (2011), p 106 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Urutskoev L. I., Filippov D.V., et al. A Study on the Possibility of Initiating Tungsten Alpha Decay Using Electric ExplosionJ. Condensed Matter Nucl. Sci. 23, (2017), p 1 www.iscmns.org/CMNS/JCMNS-Vol23.pdf

V.A. Filimonov, V.A. Lishnevskii Cold Fusion and Superfast Low-Temperature Chemical Processes in Solids: Common Basis for UnderstandingInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 25 www.iscmns.org/FIC/CFSB.pdf

V.A. Romodanov, V.I. Savin, V.V. Elksnin, Ya.B. Skuratnik Reproducibility of Tritium Generation from Nuclear Reaction in Condensed MediaInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 257 www.iscmns.org/FIC/CFSB.pdf

V.P. Afanaseyev, et al. , N.M. Kazarinov, L.M. Solin On the Possibility of D-D Fusion Stimulation by a High-Current Arc Discharge in Gas-Filled MetalInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 172 www.iscmns.org/FIC/CFSB.pdf

Vaidya S. Coherent Nuclear Reactions in Crystalline SolidsProc. ICCF4 4, (1993), p 249 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Vaidya S. On Bose-Einstein Condensation of Deuterons in PdDProc. ICCF4 4, (1993), p 267 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Valat M., Goldwater A., et al. Investigations of the Lugano HotCat ReactorJ. Condensed Matter Nucl. Sci. 21, (2016), p 81 www.iscmns.org/CMNS/JCMNS-Vol21.pdf

Valat V., Hunt R., et al. Celani痴 Wire Excess Heat Effect ReplicationJ. Condensed Matter Nucl. Sci. 15, (2015), p 246 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Vasanthi N., Raj S.A., et al. Silica Favours Bacterial Growth Similar to CarbonJ. Condensed Matter Nucl. Sci. 17, (2015), p 111 www.iscmns.org/CMNS/JCMNS-Vol17.pdf

Veziroglu T. Nejat An Obituary note to John O樽ara Bockris (1923�2013)J. Condensed Matter Nucl. Sci. 16, (2015), p 1 www.iscmns.org/CMNS/JCMNS-Vol16.pdf

Vigier J. New Hydrogen (Deuterium) Bohr Orbits in Quantum Chemistry and ‘Cold Fusion’ ProcessesProc. ICCF4 4, (1993), p 73 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Violante V., Sarto F., et al. The Study of the Fleischmann and Pons Effect through the Materials Science DevelopmentJ. Condensed Matter Nucl. Sci. 8, (2012), p 60 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Violante V., Castagna E., et al. Excess of Power during Electrochemical Loading: Materials, Electrochemical Conditions and TechniquesJ. Condensed Matter Nucl. Sci. 15, (2015), p 44 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Violante V., Castagna E., et al. Heat Production and RF Detection during Cathodic Polarization of Palladium in 0.1M LiODJ. Condensed Matter Nucl. Sci. 19, (2016), p 319 www.iscmns.org/CMNS/JCMNS-Vol19.pdf

Violante V., Sarto F., et al. Joint Scientific Advances in Condensed Matter Nuclear Science8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 341 www.iscmns.org/catania07/ProcW8.pdf

Violante V. Progress in Excess of Power Laser TriggeringProc. ICCF12 (2005), www.iscmns.org/iccf12/ViolanteV.pdf

Violante V., Sarto F., et al. Material Science on Pd-D System to Study the Occurrence of Excess PowerProc. ICCF14 2, (2008), p 429 www.iscmns.org/iccf14/ProcICCF14b.pdf

Violante, V., et al. Metallurgical effects on the dynamic of hydrogen loading in PdProc. ICCF9 (2002), www.lenr-canr.org/acrobat/ViolanteVmetallurgi.pdf

Violante, V., et al. X-ray emission during electrolysis of light water on palladium and nickel thin filmsProc. ICCF9 (2002), www.lenr-canr.org/acrobat/ViolanteVxrayemissi.pdf

Violante, V., et al. Analysis Of Ni-Hydride Thin Film After Surface Plasmons Generation By Laser TechniqueProc. ICCF10 (2003), www.lenr-canr.org/acrobat/ViolanteVanalysisof.pdf

Violante, V., et al. Search For Nuclear Ashes In Electrochemical ExperimentsProc. ICCF10 (2003), www.lenr-canr.org/acrobat/ViolanteVsearchforn.pdf

Violante, V., et al. Study Of Lattice Potentials On Low Energy Nuclear Processes In Condensed MatterProc. ICCF10 (2003), www.lenr-canr.org/acrobat/ViolanteVstudyoflat.pdf

Vysotskii V., Kuzmin On Possibility of Non-Barrier DD-Fusion in Volume of Boiling D2O During ElectrolysisProc. ICCF4 4, (1993), p 69 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Vysotskii V. Conditions and Mechanism of Nonbarrier Double-Particle Fusion in Potential Pit in CrystalProc. ICCF4 4, (1993), p 243 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Vysotskii V. I., Kornilova A. A. Low-energy Nuclear Reactions and Transmutation of Stable and Radioactive Isotopes in Growing Biological SystemsJ. Condensed Matter Nucl. Sci. 4, (2011), p 146 www.iscmns.org/CMNS/JCMNS-Vol4.pdf

Vysotskii V. I., Adamenko S. V. Low-energy Subbarrier Correlated Nuclear Fusion in Dynamical SystemsJ. Condensed Matter Nucl. Sci. 8, (2012), p 91 www.iscmns.org/CMNS/JCMNS-Vol8.pdf

Vysotskii V. I., Kornilova A., et al. Features and Giant Acceleration of ‘Warm’ Nuclear Fusion at Interaction of Moving Molecular Ions (D-…-D)+ with the Surface of a TargetJ. Condensed Matter Nucl. Sci. 13, (2014), p 603 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Vysotskii V. I., Kornilova A., et al. Stimulated (B11, p) LENR and Emission of Nuclear Particles in Hydroborates in the Region of Phase Transfer PointJ. Condensed Matter Nucl. Sci. 13, (2014), p 608 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Vysotskii V. I. On Problems of Widom豊arsen Theory Applicability to Analysis and Explanation of Rossi ExperimentsJ. Condensed Matter Nucl. Sci. 13, (2014), p 615 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Vysotskii V. I., Vysotskyy M. V., et al. Application of Correlated States of Interacting Particles in Non-stationary and Periodical Modulated LENR SystemsJ. Condensed Matter Nucl. Sci. 13, (2014), p 624 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Vysotskii, V. and A.A. Kornilova. The Spatial Structure Of Water And The Problem Of Controlled Low Energy Nuclear Reactions In Water MatrixProc. ICCF11 (2004), www.lenr-canr.org/acrobat/VysotskiiVthespatial.pdf

Vysotskii, V., et al. Successful Experiments On Utilization Of High-Activity Waste In The Process Of Transmutation In Growing Associations Of Microbiological CulturesProc. ICCF10 (2003), www.lenr-canr.org/acrobat/VysotskiiVsuccessful.pdf

Vysotskii, V., et al. The Theory And Experimental Investigation Of Controlled Spontaneous Conversion Nuclear Decay Of Radioactive IsotopesProc. ICCF10 (2003), www.lenr-canr.org/acrobat/VysotskiiVthetheorya.pdf

Waber J., de LLano M. Cold Fusion as Boson Condensation in a Fermi SeaProc. ICCF4 4, (1993), p 137 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Wada, N. and K. Nishizawa Nuclear fusion in solidwww.lenr-canr.org/acrobat/WadaNnuclearfus.pdf

Waisman J., Kertamus N. Excess Heat: The Macro PrinciplesProc. ICCF4 2, (1993), p 167 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Wallace, K. and R. Stringham. A Tribute To Gene Mallove – The “Genie” ReactorProc. ICCF11 (2004), www.lenr-canr.org/acrobat/WallaceKatributeto.pdf

Wang X., Tang P., et al. A New Device for Measuring Neutron Bursts in Cold Fusion ExperimentsProc. ICCF4 3, (1993), p 235 www.lenr-canr.org/acrobat/EPRIproceedingb.pdf

Wang X. F., Arata Y. The Importance of the Removal of Helium from Nano-Pd Particles after Solid FusionJ. Condensed Matter Nucl. Sci. 13, (2014), p 13 www.iscmns.org/CMNS/JCMNS-Vol13.pdf

Wang, D. and X. Zhang Experimental discovery of X-ray new spectral series and interpretationwww.lenr-canr.org/acrobat/WangDexperiment.pdf

Warner, J. and J. Dash. SEM and EDS Characterization of Titanium Cathodes Before and After Electrolysis in Heavy Waterwww.lenr-canr.org/acrobat/WarnerJsemandedsc.pdf

Warner, J., J. Dash, and S. Frantz. Electrolysis of D2O With Titanium Cathodes: Enhancement of Excess Heat and Further Evidence of Possible TransmutationProc. ICCF9 (2002), www.lenr-canr.org/acrobat/WarnerJelectrolys.pdf

Wayte R. A Technique for Making Nuclear Fusion in SolidsJ. Condensed Matter Nucl. Sci. 18, (2016), p 36 www.iscmns.org/CMNS/JCMNS-Vol18.pdf

Weaver C., Prelas M., et al. Progress in Development of Diamond-based Radiation Sensor for Use in LENR ExperimentsJ. Condensed Matter Nucl. Sci. 15, (2015), p 305 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Weaver C., Prelas M., et al. Investigation of Possible Neutron Production by D/Ti Systems under High Rates of Temperature ChangeJ. Condensed Matter Nucl. Sci. 15, (2015), p 314 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Wei Qing-Ming, Rao Yong-Chu, et al. Element Analysis of the Surface Layer on the Pd and Pd-Y Alloy after Deuterium Permeation8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals. Catania, Italy. (2007), p 351 www.iscmns.org/catania07/ProcW8.pdf

Wei, Q., et al. Excess heat in Pd/C catalyst electrolysis experiment (Case-type cathode)Proc. ICCF9 (2002), www.lenr-canr.org/acrobat/WeiQexcessheat.pdf

Wei, Q., et al. Deuterium (Hydrogen) Flux Permeating through Palladium and Condensed Matter Nuclear ScienceProc. ICCF11 (2004), www.lenr-canr.org/acrobat/WeiQdeuteriumh.pdf

Weinberger, S. Warming Up to Cold Fusionwww.lenr-canr.org/acrobat/Weinbergerwarmingupt.pdf

Whaley D. Boson Dynamics Of Deuterium In Metals–Possible Mechanisms For Fusion In A Solid LatticeProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 552 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

White, C.T., et al. D-D (H-H) interactions within the interstices of Pdwww.lenr-canr.org/acrobat/WhiteCTddhhintera.pdf

Will F., Cedzynska K., et al. Tritium Generation in Palladium Cathodes with High Deuterium LoadingProc. ICCF4 1, (1993), p 197 www.lenr-canr.org/acrobat/EPRIproceeding.pdf

Will, F.G. Groups Reporting Cold Fusion Evidencewww.lenr-canr.org/acrobat/WillFGgroupsrepo.pdf

Will, F.G., et al. Studies of Electrolytic and Gas Phase Loading of Palladium with DeuteriumProc. ACCF2. SIF Conference Proceedings 33. The Science of Cold Fusion. (1991), www.lenr-canr.org/acrobat/WillFGstudiesofe.pdf

Wolf K., Lawson D. R., et al. A Search For Neutrons And Gamma Rays Associated With Tritium Production In Deuterided MetalsProceedings: EPRI-NSF Workshop on Anomalous Effects in Deuterided Metals (1989), p 165 www.lenr-canr.org/acrobat/EPRInsfepriwor.pdf

Xing Zhong Li Searching for Truth with High Expectations – 5 Year Studies on Cold Fusion in ChinaInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 149 www.iscmns.org/FIC/CFSB.pdf

Yabuuchi N. Deuteron Waves and Cold FusionProc. ICCF4 4, (1993), p 211 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Yamada, H., et al. Tritium Production in Palladium Deuteride/Hydride in Evacuated ChamberProc. ICCF8 (2000), www.lenr-canr.org/acrobat/YamadaHtritiumpro.pdf

Yamada, H., et al. Analysis By Time-Of-Flight Secondary Ion Mass Spectroscopy For Nuclear Products In Hydrogen Penetration Through PalladiumProc. ICCF10 (2003), www.lenr-canr.org/acrobat/YamadaHanalysisby.pdf

Yamaguchi T., Sasaki Y.,, et al. Investigation of Nuclear Transmutation Using Multilayered CaO/X/Pd Samples Under Deuterium PermeationProc. ICCF14 1, (2008), p 195 www.iscmns.org/iccf14/ProcICCF14a.pdf

Yamaguchi, E. and T. Nishioka Cold fusion induced by controlled out-diffusion of deuterons in palladiumwww.lenr-canr.org/acrobat/YamaguchiEcoldfusion.pdf

Yamamoto H. An Explanation of Earthquake by BlackLight Process and Hydrogen FusionProc. ICCF12 (2005), www.iscmns.org/iccf12/YamamotoH.pdf

Yang J., Chen X., et al. Cold Fusion and New PhysicsProc. ICCF4 4, (1993), p 167 www.lenr-canr.org/acrobat/EPRIproceedingc.pdf

Yi-Fang Chang, Chuan-Zan Yu The Physical-Chemical and Nuclear Multistage Reaction Mechanism and the Multistage Ignition Condition on Cold FusionInternational Symposium on Cold Fusion and Advanced Energy Sources. Minsk (1994), p 79 www.iscmns.org/FIC/CFSB.pdf

Yields of protons emitted in the D + Dwww.lenr-canr.org/acrobat/YukiHanomalouse.pdf

Yuki, H., et al. Measurement of the D(d,p) reaction in Ti for 2.5 < Ed < 6.5 keV and electron screening in metalwww.lenr-canr.org/acrobat/YukiHmeasuremen.pdf

Yuki, H., T. Satoh, and T. Ohtsuki D + D reaction in metal at bombarding energies below 5 keVwww.lenr-canr.org/acrobat/YukiHddreaction.pdf

Zaromb S. The Latest Environmental Contributions of John O樽ara BockrisJ. Condensed Matter Nucl. Sci. 16, (2015), p 3 www.iscmns.org/CMNS/JCMNS-Vol16.pdf

Zelensky V.F. Fusion of Light Atomic Nuclei in Vacuum and in Solids and Two Ways of Mastering Nuclear Fusion EnergyJ. Condensed Matter Nucl. Sci. 24, (2017), p 146 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Zelensky V.F., Gamov V.O., et al. Experimental Device of Cold HD-Fusion Energy Development and Testing (Verification Experiment)J. Condensed Matter Nucl. Sci. 24, (2017), p 168 www.iscmns.org/CMNS/JCMNS-Vol24.pdf

Zhang Q., Gou Q., et al. The Excess Heat Experiments on Cold Fusion in a Titanium LatticeProc. ICCF4 2, (1993), p 263 www.lenr-canr.org/acrobat/EPRIproceedinga.pdf

Zhang W. Thermal Analysis of Explosions in an Open Palladium/Deuterium Electrolytic SystemJ. Condensed Matter Nucl. Sci. 17, (2015), p 116 www.iscmns.org/CMNS/JCMNS-Vol17.pdf

Zhang Wu-Shou, Dash J., et al. Construction of a Seebeck Envelope Calorimeter and Reproducibility of Excess HeatProc. ICCF14 1, (2008), p 26 www.iscmns.org/iccf14/ProcICCF14a.pdf

Zhang, W.-S. Effects of electrochemical reaction and self-stress on hydrogen diffusion in tubular membranes during galvanostatic chargingwww.lenr-canr.org/acrobat/ZhangWSeffectsofe.pdf

Zhang, W.-S. Resistance shifts of a Pd|H electrode in measurement and electrolysis with direct currentswww.lenr-canr.org/acrobat/ZhangWSresistance.pdf

Zhang, W.-S. and J. Dash. Excess Heat Reproducibility And Evidence Of Anomalous Elements After Electrolysis In Pd/D2O+H2SO4 Electrolytic CellsProc. ICCF13 (2007), www.lenr-canr.org/acrobat/ZhangWSexcessheat.pdf

Zhang, W.-S. and X.-W. Zhang A numerical approach to the voltammograms of a thick plate Pd|H electrodewww.lenr-canr.org/acrobat/ZhangWSanumerical.pdf

Zhang, W.-S. and Z.-L. Zhang Effects of hydrogen self-stress in thin circular-plates with clamped edgeswww.lenr-canr.org/acrobat/ZhangWSeffectsofh.pdf

Zhang, W.-S. and Z.-L. Zhang Effects of self-stress on the hydrogen absorption into palladium hydride electrodes of plate form under galvanostatic conditionswww.lenr-canr.org/acrobat/ZhangWSeffectsofs.pdf

Zhang, W.-S. and Z.-L. Zhang Steady concentration distribution of hydrogen in elastic membranes during hydrogen diffusionwww.lenr-canr.org/acrobat/ZhangWSsteadyconc.pdf

Zhang, W.-S., et al. Effects of reaction heat and self-stress on the transport of hydrogen through metallic tubes under conditions far from equilibriumwww.lenr-canr.org/acrobat/ZhangWSeffectsofr.pdf

Zhang, W.-S., et al. Numerical simulation of diffusivity of hydrogen in thin tubular metallic membranes affected by self-stresseswww.lenr-canr.org/acrobat/ZhangWSnumericalsa.pdf

Zhang, W.-S., et al. Numerical simulation of hydrogen (deuterium) absorption into テ�-phase hydride (deuteride) palladium electrodes under galvanostatic conditionswww.lenr-canr.org/acrobat/ZhangWSnumericals.pdf

Zhang, W.-S., X.-W. Zhang, and H.Q. Li The maximum hydrogen (deuterium) loading ratio in the Pd|H2O(D2O) electrochemical systemwww.lenr-canr.org/acrobat/ZhangWSthemaximum.pdf

Zhang, W.-S., X.-W. Zhang, and X.G. Zhao Voltammograms of thin layer Pd/H(D) electrodes in the coexistence of a and テ� phaseswww.lenr-canr.org/acrobat/ZhangWSvoltammogr.pdf

Zhang, W.-S., X.-W. Zhang, and Z.-L. Zhang Effects of self-induced stress on the steady concentration distribution of hydrogen in fcc metallic membranes during hydrogen diffusionwww.lenr-canr.org/acrobat/ZhangWSeffectsofsa.pdf

Zhang, W.-S., Z.-F. Zhang, and Z.-L. Zhang Some problems on the resistance method in the in situ measurement of hydrogen content in palladium electrodewww.lenr-canr.org/acrobat/ZhangWSsomeproble.pdf

Zhang, W.-S., Z.-F. Zhang, and Z.-L. Zhang. Electrochemical effects on the resistance measurements of Pd/H electrodeProc. ICCF9 (2002), www.lenr-canr.org/acrobat/ZhangWSelectroche.pdf

Zhang, W.-S., Z.-F. Zhang, and Z.-L. Zhang. Primary calorimetric results on closed Pd/D2O electrolysis systems by calvet calorimetryProc. ICCF9 (2002), www.lenr-canr.org/acrobat/ZhangWSprimarycal.pdf

Zhang, W.-S., Z.-L. Zhang, and X.-W. Zhang Effects of self-induced stress in tubular membranes during hydrogen diffusionwww.lenr-canr.org/acrobat/ZhangWSeffectsofsb.pdf

Zhang, W.-S., Z.-L. Zhang, and X.-W. Zhang Effects of temperature on hydrogen absorption into palladium hydride electrodes in the hydrogen evolution reactionwww.lenr-canr.org/acrobat/ZhangWSeffectsoft.pdf

Zhang, W.-S., Z.-L. Zhang, and X.-W. Zhang. Effects of Temperature on Loading Ratios of Hydrogen (Deuterium) in Palladium Cathodes under the Galvanostatic ConditionsProc. ICCF8 (2000), www.lenr-canr.org/acrobat/ZhangWSeffectsofta.pdf

Zhang, X., et al. On the Explosion in a Deuterium/Palladium Electrolytic Systemwww.lenr-canr.org/acrobat/ZhangXontheexplo.pdf

Zhang, Z.-L. and W.-S. Zhang. Possibility of electron capture by deuteronProc. ICCF9 (2002), www.lenr-canr.org/acrobat/ZhangZLpossibilit.pdf

Zhang, Z.-L., et al. Measurements of Excess Heat in the Open Pd/D2O Electrolytic System by the Calvet CalorimetryProc. ICCF8 (2000), www.lenr-canr.org/acrobat/ZhangZLmeasuremen.pdf

Zhang, Z.-L., W.-S. Zhang, and Z.-Q. Zhang. Further study on the solution of Schrテカdinger equation of hydrogen-like atomProc. ICCF9 (2002), www.lenr-canr.org/acrobat/ZhangZLfurtherstu.pdf

Zhang, Z.-Q., Z.-L. Zhang, and W.-S. Zhang. Are there some loose bound states of nucleus-nucleus two-body system?www.lenr-canr.org/acrobat/ZhangZQarethereso.pdf

Zhou D. Z., Wang C., et al. Energetic Particles Generated in Earlier Pd + D Nuclear ReactionsJ. Condensed Matter Nucl. Sci. 15, (2015), p 33 www.iscmns.org/CMNS/JCMNS-Vol15.pdf

Zhou, X., X.Z. Li, and B. Liu. Bethe’s Calculation For Solar Energy And Selective Resonant TunnelingProc. ICCF10 (2003), www.lenr-canr.org/acrobat/ZhouXbethescalc.pdf

1300 titles.


Index to Conference Proceedings

International Conference for Cold Fusion (ICCF)
also known as
International Conference for Condensed Matter Nuclear Science (ICCMNS)

… and there are other organizations involved that have held conferences with proceedings issued.

EPRI-NSF, Washington, DC, October 16-18, 1989

Where I have not yet split the proceedings into individual papers, and where I have found them, I here link to copies or similar resources. ICCF Proceedings are now routinely being published as JCMNS volumes, and those are all split and hosted here.

ICCF-1, Salt Lake City, Utah, March 28-31, 1990
ICCF-2 , Como, Italy, June 29-July 4, 1991
ICCF-3, Nagoya, Japan, October 21 – 25, 1992
ICCF-4 , Lahaina, Maui, Hawaii, December 6-9, 1993
ICCF-5, Monte Carlo, Monaco, April 9-13, 1995
ICCF-6, Lake Toya, Hokkaido, Japan, October 13th – 18th 1996
ICCF-7, Vancouver, Canada, April 19-24, 1998. review by Jed Rothwell. abstracts (partial list), part 1, part 2, part 3Some documents. (copies in libraries)
ICCF-8, Lerici (La Spezia), Italy, 21-26 May 2000 see lenr-canr.org for some papers
ICCF-9, Beijing, China, 2002, May 19 – 24, 2002 (our page is incomplete, based on lenr-canr.org, we are looking for a copy of the Proceedings.
ICCF-10, Cambridge, Massachusetts 24 – 29 August 2003, see lenr-canr.org. That is incomplete, we have the printed Proceedings and will complete it.
ICCF-11, Marseilles, France. Book is available on World Scientific and Amazon. Most papers are on lenr-canr.org (index to this volume created from the World Scientific site, but we have no copy of the proceedings. Our page links to lenr-canr.org copies and notes where those don’t exist.)
ICCF-12, Yokahama, Japan, 27 November – 2 December 2005. We have a paper copy of Proceedings. Some papers.
ICCF-13, Dagomys, Sochi, Russia,  June 25 – July 1, 2007. There is almost no mention of this conference on lenr-canr.org. Documents were hosted on iscmns.org for a time. Those have disappeared, but can be found on archive.org and newenergytimes.com, including a table of contents. The program and abstracts. (no longer hosted on NET, found on archive.org.)
ICCF-14, Washington, D.C., 10-15 August 2008.
ICCF-15, Roma, Italy, October 5 – 9, 2009, ENEA Proceedings, linked from ENEA.
ICCF-16, Chennai, India, February 2011, jcmns/v8 and jcmns/v10
ICCF-17, Daejeon, South Korea, 2012. We have preprints for all presentations. Proceedings jcmns/v13.
ICCF-18, Columbia, Missouri, July 21 – 27, 2013. jcmns/v15
ICCF-19, Padua, Italy, April 13–17, 2015, jcmns/v19
ICCF-20, Sendai, Japan, October 02–07, 2016,  jcmns/v24
ICCF-21 (forthcoming) abstracts.

International Workshop on Anomalies in Hydrogen/Deuterium Loaded Metals (IWAHLM)

IWAHLM-8, Catania, Italy, 13-18 October 2007
IWAHLM-11, Toulouse, France, October 15–16, 2015, jcmns/v23
IWAHLM-12, Asti, Italy, June 5–9, 2017, jcmns/v26.
IWAHLM-13 is scheduled for 5-9 October 2018, Greccio, Italy.

Do other IWAHLM proceedings exist? I have found references to these IWAHLM events:

IWAHLM-9, 17 – 19 September 2010, page on conference. Program.
IWAHLM-10, Pontignano (Siena)-Italy; 10-14 April 2012. Program. Abstracts.
IWAHLM-6,  Certosa di Pontignano, (Siena)-Italy, 2005.

IWAHLM-7, Asti, Italy, September 23-25, 2006, article includes program, and notes that Asti workshops were started in 1993.
IWAHLM-5, Asti, Italy, 2004.
Asti Workshop on Anomalies in Hydrogen-Loaded Metals, Asti, Italy, November 27-30, 1997. Articles about this conference. (what number was this? From clues, this would be IWAHLM-3.

The 1997 article mentions the history, workshops started in 1993 by a Fiat executive.
IWAHLM-2 October 1995. Truffle Prizes to Akito Takahashi and Francesco Piantelli.
IWAHLM-1  Villa Ricardo, Asti, Italy. Truffle Prize to Yan Kucherov.

Japan CF Research Society

JCF has available Proceedings, from all JCF Conferences since JCF-4 ( 2002) through JCF-17 (2017). There were also abstracts available from JCF 1 through 3, but those have gone down. It might be possible to find them.

Related resources

New Energy Times index to conferences

Lenr-canr.org page on conferences


subpage of iccf-21/abstracts/review/


Slides: ICCF21 Main McKubre

introductory summary by Ruby Carat:

Michael McKubre followed up making a plea that “condensed matter nuclear science is anomalous no more!” He echoes Tom Darden’s sentiment that CMNS must be integrated into the mainstream of science.

“I needed to see it with my own eyes to believe that it was true”, says McKubre. “At the same time, cold fusion is reproduced somewhere on the planet every day. Verification has already happened. But self-censorship is a problem in the CMNS field. Are we guarding our secrets for fear that someone else might take credit? Yes.”

Michael McKubre with The Fleischmann Pons Heat and Ancillary Effects: What Do We Know, and Why? How Might We Proceed? (copy on ColdFusionNow, 74.16 MB)

Local copy on CFC: (1:02:32)

But energy is a primary problem and you must “collaborate, cooperate, and communicate”, McKubre says to the scientists in the room.

That’s been my message for years. . . . the three C’s.

McKubre thanked Jed Rothwell and Jean-Paul Biberian for all the work on lenr.org and the Journal of Condensed Matter Nuclear Science, respectively. Beyond that, the communication in the CMNS field is very poor and needs to be remedied.

He also supports a multi-laboratory approach where reproductions are conducted. Verification of this science has already occurred in the 90s, with the confirmation of tritium, and the heat-helium correlation. He believes that all the many variables must be correlated to move forward. Unfortunately, he believes the same thing he said in 1996, according to a Jed Rothwell article, that “acceptance of this field will only come about when a viable technology is achieved.”

To make progress, a procedure for replication must be codified, and a set of papers should be packaged for newbies to the field. A demonstration cell is third important effort to pursue.

Electrochemical PdD/LiOD is already proven, despite the problem with “electrochemisty”, and has not been demonstrated for >10 years. Energetics Technologies cell 64 a few years back gave 40 kJ input 1.14 MJ output, gain= 27.5 Sadly, the magic materials issue prevented replication.

“1 watt excess power is too small to convince a skeptic, and 100 Watts too hard (at least for electrochemistry)”, said McKubre. The goal is to create the heat effect at the lowest input power possible.

According to McKubre, Verification, Correlation, Replication, Demonstration, Utilization are the five marks of exploring and exploiting the FPHE.

Task for a learner/volunteer: transcribe the talk, key it to the minutes in the audio and to the slide deck.

I’m postponing major review until I have the text. I’ll have a lot to say (as he predicted!).


subpage of iccf-21/abstracts/review/


My comments are in indented italics.

Abstract 1

Investigation of the Nickel-Hydrogen Anomalous Heat Effect

Edward J. Beiting
TrusTech, USA
(email redacted)

Experimental work was undertaken at The Aerospace Corporation to reproduce a specific
observation of the gas-phase Anomalous Heat Effect (aka LENR).[1] This task required the
production of a quantity of heat energy by a mass of material so small that the origin of the energy
cannot be attributable to a chemical process. The goal is to enhance its credibility by reproducing
results first demonstrated in Japan and later reproduced in the U.S. by a solitary investigator. The
technique heated nanometer-sized Ni:Pd particles (20:1 molar ratio) embedded in micron-sized
particles of an inert refractory of ZrO2. It was not within the purview of this work to investigate the
physical origin of the AHE effect or speculate on its source.

The goal was off from the beginning, stated as to “enhance its credibility.” That sets up an opportunity for confirmation bias. After all, engineers will keep working toward the goal until they reach it. Not speculating on the physical origin of anomalous energy, great, though speculating on possible artifacts would be completely in order, to test them and confirm or reject them.

An apparatus was built that comprised identical test and a reference heated cells. These thermally
isolated cells each contained two thermocouples and a 10 cm3 volume of ZrO2NiPd particles.

Calibration functions to infer thermal power from temperature were created by electrically heating
the filled cells with known powers when they were either evacuated or pressurized with 1 bar of N2.
During the experimental trial, the test cell was pressurized with hydrogen and the control cell was
pressurized with nitrogen.

An obvious problem: nitrogen and hydrogen have drastically different thermal conductivity. Calibration can be a major problem with hot hydrogen work. We will study how they did it. 

After conditioning the cells, both were heated to near 300°C for a period
of 1000 hours (40 days). During this period, the test cell registered 7.5% more power
(approximately 1 W) than the input power. The control cell measured approximately 0.05 W of
excess power. The error in the excess power measurement was ±0.05 W.

Time-integrating the excess power to obtain an excess energy and normalizing to the 20 gram mass
of the ZrO2NiPd sample yields a specific energy of 173 MJ/kg. Assuming that the active material is
the 5.44g of Ni+Pd yields a specific energy of 635 MJ/kg. For comparison, the highest specific
energy of a hydrocarbon fuel (methane) is 55.5 MJ/kg. The highest chemical specific energy listed
[see Energy Density in Wikipedia] is 142 MJ/kg for hydrogen compressed to 700 bar. Based on
these results, it is unlikely that the source of heat energy was chemical in origin.

So here he is speculating on the origin, or, specifically, what is not the origin. Integrating power to determine excess energy can be quite sensitive to some systematic artifact, error would accumulate. Again, there is a show of precision in the numbers. What would be a standard error calculation? In SRI presentation of the Case experiment, where integrated energy was plotted against helium measurements, the error bars grow very large as the experiment proceeds. That shows the issue. Without error calculations, based on actual data variance, the significance of the result may be unclear.

(images can be seen in the original abstract) The full report (which will be reviewed below):

[1] E. Beiting, “Investigation of the nickel-hydrogen anomalous heat effect,” Aerospace
Report No. ATR-2017-01760, The Aerospace Corporation, El Segundo CA, USA, May 15, 2017.

Abstract 2

Generation of High-Temperature Samples and Calorimetric Measurement of Thermal Power for the
Study of Ni/H2 Exothermic Reactions

Edward J. Beiting, Dean Romein
TrusTech, USA
(email redacted)

Instrumentation developed to measure heat power from a high-temperature reactor for experimental
trials lasting several weeks is being applied to gas-phase Ni/H2 LENR. We developed a reactor that
can maintain and record temperatures in excess of 1200o C while monitoring pressures exceeding 7
bar. This reactor is inserted into a flowing-fluid calorimeter that allows both temperature rise and
flow rate of the cooling fluid to be redundantly measured by different physical principles. A
computerized data acquisition system was written to automate the collection of more than 20
physical parameters with simultaneous numerical and dual graphical displays comprising both a
strip chart and complete history of key parameters.

Redundant measures, too often neglected. Nice.

The water inlet and outlet temperatures of the calorimeter are simultaneously measured with
thermocouple, RTD, and thermistor sensors. The water flow is passed in series through two
calorimeters and a Hall-effect flow meter. The first calorimeter houses a resistance heater of known
input power, which allows the flow rate to be inferred from the heater power and water inlet and
outlet temperature difference. Careful calibration of this system produces a nominal accuracy and
precision of ±1 W.

“Nominal accuracy and precision.” I.e., not measured. Not so nice. Was this correctly stated? The full report claims XP on the order of 1 W. 

The reactor is constructed by tightly wrapping Kanthal wire around an alumina tube, which is
embedded in ceramic-fiber insulation (see Figures 1 and 2). The length of the alumina tube is
chosen so that its unheated end remains below 100o C when the interior volume of the heated end is
1300o C. During use the internal reactor temperature is inferred from two type-N thermocouples
fixed to the outside of the reactor using a previously made calibration that employed internal
thermocouples. Using external thermocouples have advantages: the thermocouple metals cannot
react with the reactants; the thermocouples are kept at lower temperatures (usually < 1000C)
increasing the thermocouple’s life and accuracy; no high pressure/vacuum feedthrough is required;
no high temperature electrical insulation isolating the thermocouple from the reactants is necessary.

The design gives me a headache, trying to understand the implications of that drastic temperature gradient across the length of the alumina tube. The reasons all sound good, but the road to a very hot place is paved with good reasons. We’ll see how this is handled in the report.

This instrumentation is being used to study the gas-phase anomalous heat effect (aka LENR) using
nickel and light hydrogen. Tests are being undertaken using both LiAlH4 and bottled H2 as the
source of hydrogen. The results from these tests will be presented with special emphasis on the
morphology and the cleaning of the surface of the nickel particles, absorption of hydrogen by the
nickel, and excess heat or lack thereof.

All techniques and data will be presented in sufficient detail to allow reproducibility. Nothing will
be deemed proprietary. Source code and documentation of the data acquisition software resulting
from a significant development effort will be distributed on request.

Great. I think the better term would be replicability, i.e., the same techniques could be used. But will anyone actually do this? Results, then, might be reproducible. But what results? At this point my impression is that there were two runs, the second of which is described. What’s the variation or reliability of the result?

That is impossible to determine from such a small sample set. At the risk of sounding like a broken record, one theme of the conference, certainly that of Mike McKubre and myself, was correlation, that much more is needed to progress the field than Yet Another Anecdote, which, so far, this study seems to amount to. Was it a replication? 

The first abstract has the goal as “reproducing results first demonstrated in Japan and later reproduced in the U.S. by a solitary investigator.” This would be a reference to Y. Arata and Y. C. Zhang, ‘Formation of Condensed Metallic Deuterium Lattice and Nuclear Fusion,” Proc. Jpn. Acad. Ser. B, 2002 78(Ser. B), p. 57 2, on the one hand, and, on the other,  B. Ahern, “Program on Technology Innovation: Assessment of Novel Energy Production Mechanisms in a Nanoscale Metal Lattice,” EPRI Report 1025575, Technical Update, August 2012.

Crucial to experiments in this field is the exact material. See the review here of the similar work of the Japanese collaboration, lead author Akito Takahashi.

Arata used “ZrO2, · Pd powder . . .  as metal specimens constructed with nanometer-sized individual Pd particles embedded dispersively into ZrO2, matrix, which were made by annealing amorphous Zr65Pd35 alloy.” However, the paper cited shows a 10 W result, with a “DS-cathode,” which is a technique Arata used to generate very high deuterium pressure. (Confirmed by SRI, long story). This is a very different technique, using different material.


While several research reports from Europe by Piantelli et al. [16] had indicated significant thermal energy output from nanotextured nickel in the presence of hydrogen gas, similar tests conducted under
this EPRI research project produced only milliwatt-scale thermal power release. Based on experimental calorimetric calibrations, the amount of thermal power being produced was estimated to be about
100 milliwatts per degree C of elevation above the value of the outer resistance thermal device (RTD).

In one experiment, researchers used 10-nm nickel powder from Quantum Sphere Corp. The inner RTD was 208o C hotter than the outer RTD (533o C versus 325o C) and represents roughly ~ 21 watts from 5 grams of nanopowder, based on the calibration. The powder maintained this rate of thermal power output for a period of five days when it was terminated for evaluation. There was no sign of degradation of the power output. Researchers, however, were not able to replicate this final experiment due to limited project funding.

Anecdote. So, perhaps Beiting was trying to replicate that high-output experiment? No. And I see this over and over in the field. Promising avenues are abandoned because they still are not good enough, and researchers, instead of nailing down and confirming what has come before, want to try something new, perhaps hoping that some miracle will cause their experiment to melt down. (and if it does, they won’t be ready for it!)

Beiting was using “Ni:Pd particles (20:1 molar ratio) embedded in micron-sized
particles of an inert refractory of ZrO2.”  But that is not all that was in the mix. From the full report:

Because it was an internally funded modest program, the goal was not to create a research effort to study its origin but to demonstrate reproducibility of previous work. If demonstration was successful and convincing, the hope was that this work would stimulate a subsequent larger effort.

To this end, a review of the gas-phase AHE results was made when this project was initiated in 2013 to find
an observation likely to be reproduced. Three criteria were considered to increase probability of achieving
this goal: a complete description of material preparation was required; a simple triggering mechanism was desirable to reduce the experimental complexity; and at least one reproduction of the manifestation of
excess heat† of non-chemical origin using the method should be documented by an independent investigator. At the time of this survey, only the work by Arata and Zhang [4] in Japan as reproduced by Ahern [5] in the United States met these three requirements.‡

Only to someone naive about the history of LENR research. Experiments which are vaguely similiar are often considered “confirmations.” There is commonly a lack of extended experimental sets with a single variable. The Takahashi ICCF-21 report barely begins to address this, in parts. Not realizing the danger, Beiting bet the farm on a new and unconfirmed approach. My emphasis:

This method employs a simple heat-triggering mechanism on a powder of micron-sized particles of ZrO2 imbedded with nanometer-sized particles of a nickel (with a small admixture of palladium). The active material used in the work presented in this report differs from that of Refs. [4] and [5] by the addition of magnetic particles. This addition was made with the desire of increasing the probability of observing excess energy, based on reports by other investigators [6] and the initial experimental trial in this work. Other than these additional particles, the material used here was identical to that used by Refs. [4] and [5].

Sounds like multiple reports, eh? No, this was one paper by one working group, a private company, led by Mitchell Swartz, using a proprietary device, the NANOR. And they did not use ground-up magnets. I’ll come back to that.

The Arata and Zhang report experiment was  not heat-triggered, and Ahern was not a replication of it. There were similarities, that’s all.

Ref 6 was  M. Swartz, G. Verner, J. Tolleson, L. Wright, R. Goldbaum, and P. Hagelstein, “Amplification and Restoration of Energy Gain Using Fractionated Magnetic Fields on ZrO2-PdD Nanostructured Components,” J. Condensed Matter Nucl. Sci. 15, 66-80 (2015). Exactly what was found from the “fractionated magnetic fields” isn’t clearly presented, but the authors were obviously impressed. (Only two DC field data points with an effect are shown). Beiting did not do what they did, though! 

In this case, it was discovered that high intensity, dynamic, repeatedly fractionated magnetic fields have a major, significant and unique synchronous amplification effect on the preloaded NANOR®-type LANR device under several conditions of operation.

No details were given, only vague hints. This must be proprietary information, not surprising for a commercial effort. I have no idea what “fractionated magnetic field” means. Much Swartz language is idiosyncratic. Google finds only the JCMNS article for the term.

The Beiting experiment was one-off, not replication. That is unfortunate, because the relatively weak results cannot then be strengthened by other reports. The original goal seems to have been lost in the shuffle. 

I will continue study of the actual Beiting report, but am publishing this today as a draft, based on the abstracts and the single issue from the report about what the work was intended to confirm.

Takahashi and New Hydrogen Energy

Today I began and completed a review of Akito Takahashi’s presentation on behalf of a collaboration of groups, using the 55 slides made available. Eventually, I hope to see a full paper, which may resolve some ambiguities. Meanwhile, this work shows substantial promise.

This is the first substantial review of mine coming out of ICCF-21, which, I declared, the first day, would be a breakthrough conference.

I was half-way out-of-it for much of the conference, struggling with some health issues, exacerbated by the altitude. I survived. I’m stronger. Yay!

Comments and corrections are invited on the reviews, or on what will become a series of brief summaries.

The title of the presentation: Research Status of Nano-Metal Hydrogen Energy. There are 17 co-authors, affiliated with four universities (Kyushu, Tohoku, Kobe, and Nagoya), and two organizations (Technova and Nissan Motors). Funding was reportedly $1 million US, for October 2015 to October 2017.

This was a major investigation, finding substantial apparent anomalous heat in many experiments, but this work was, in my estimation, exploratory, not designed for clear confirmation of a “lab rat” protocol, which is needed. They came close, however, and, to accomplish that goal, they need do little more than what they have already done, with tighter focus. I don’t like presenting “best results,” from an extensive experimental series, it can create misleading impressions.

The best results were from experiments at elevated temperatures, which requires heating the reactor, which, with the design they used, requires substantial heating power. That is not actually a power input to the reactor, however, and if they can optimize these experiments, as seems quite possible, they appear to be generating sufficient heat to be able to maintain elevated temperature for a reactor designed to do that. (Basically, insulate the reactor and provide heating and cooling as needed, heating for startup and cooling once the reactor reaches break-even — i.e., generating enough heat to compensate for heat losses). The best result was about 25 watts, and they did not complete what I see as possible optimization.

They used differential scanning calorimetry to identify the performance of sample fuel mixtures. I’d been hoping to see this kind of study for quite some time. This work was the clearest and most interesting of the pages in the presentation; what I hope is that they will do much more of that, with many more samples. Then, I hope that they will identify a lab rat (material and protocol) and follow it identically with many trials (or sometimes with a single variation, but there should be many iterations with a single protocol.

They are looking forward to optimization for commercial usage, which I think is just slightly premature. But they are close, assuming that followup can confirm their findings and demonstrate adequate reliability.

It is not necessary that this work be fully reliable, as long as results become statistically predictable, as shown by actual variation in results with careful control of conditions.

Much of the presentation was devoted to Takahashi’s TSC theory, which is interesting in itself, but distracting, in my opinion, from what was most important about this report. The experimental work is consistent with Takahashi theory, but does not require it, and the work was not designed to deeply vet TSC predictions.

Time was wasted in letting us know that if cold fusion can be made practical, it will have a huge impact on society. As if we need to hear that for the n thousandth time. I’ve said that if I see another Rankin diagram, I’d get sick. Well, I didn’t, but be warned. I think there are two of them.

Nevertheless, this is better hot-hydrogen LENR work than I’ve seen anywhere before. I’m hoping they have helium results (I think they might,) which could validate the excess heat measures for deuterium devices.

I’m recommending against trying to scale up to higher power until reliability is nailed.

Update, July 1, 2018

There was reference to my Takahashi review on LENR Forum, placed there by Alain Coetmeur, which is appreciated. He misspelled my name. Ah, well!

Some comments from there:

Alan Smith wrote:

Abd wrote to Akito Takahashi elsewhere.

“I am especially encouraged by the appearance of a systematic approach, and want to encourage that.”

A presumptuous comment for for somebody who is not an experimenter to make to a distinguished scientist running a major project don’t you think? I think saying ‘the appearance’ really nails it. He could do so much better.

That comment was on a private mailing list, and Smith violated confidentiality by publishing it. However, no harm done — other than by his showing no respect for list rules.

I’ll point out that I was apparently banned on LENR Forum, in early December, 2016, by Alan Smith. The occasion was shown by my last post. For cause explained there, and pending resolution of the problem (massive and arbitrary deletions of posts — by Alan Smith — without notice or opportunity for recovery of content), I declared a boycott. I was immediately perma-banned, without notice to me or the readership.

There was also an attempt to reject all “referrals” to LENR Forum from this blog, which was easily defeated and was then abandoned. But it showed that the problem on LF was deeper than Alan Smith, since that took server access. Alan Coetmeur (an administrator there) expressed helplessness, which probably implicated the owner, and this may have all been wrapped in support for Andrea Rossi.

Be that as it may, I have excellent long-term communication with Dr. Takahashi. I was surprised to see, recently, that he credited me in a 2013 paper for “critical comments,” mistakenly as “Dr. Lomax”, which is a fairly common error (I notified him I have no degree at all, much less a PhD.) In that comment quoted by Smith, “appearance” was used to mean “an act of becoming visible or noticeable; an arrival,” not as Smith interpreted it. Honi soit qui mal y pense.

I did, in the review, criticize aspects of the report, but that’s my role in the community, one that I was encouraged to assume, not by myself alone, but by major researchers who realize that the field needs vigorous internal criticism and who have specifically and generously supported me to that end.

Shane D. wrote:

Abd does not have much good to say about the report, or the presentation delivery.

For those new to the discussion, this report…the result of a collaboration between Japanese universities, and business, has been discussed here under various threads since it went public. Here is a good summation: January 2018 Nikkei article about cold fusion

Overall, my fuller reaction was expressed here, on this blog post. I see that the format (blog post here, detailed review as the page linked from LF) made that less visible, so I’ll fix that. The Nikkei article is interesting, and for those interested in Wikipedia process, that would be Reliable Source for Wikipedia. Not that it matters much!

Update July 3, 2018

I did complain to a moderator of that private list, and Alan edited his comment, removing the quotation. However, what he replaced it with is worse.

I really like Akito. Wonderful man. And a great shame Abd treats his work with such disdain.

I have long promoted the work of Akito Takahashi, probably the strongest theoretician working on the physics of LENR. His experimental work has been of high importance, going back decades. It is precisely because of his position in the field that I was careful to critique his report. The overall evaluation was quite positive, so Smith’s comment is highly misleading.

Not that I’m surprised to see this from him. Smith has his own agenda, and has been a disaster as a LENR Forum moderator. While he may have stopped the arbitrary deletions, he still, obviously, edits posts without showing any notice.

This was my full comment on that private list (I can certainly quote myself!)

Thanks, Dr. Takahashi. Your report to ICCF-21 was of high interest, I have reviewed it here:


I am especially encouraged by the appearance of a systematic approach, and want to encourage that.

When the full report appears, I hope to write a summary to help promote awareness of this work.

I would be honored by any corrections or comments.

Disdain? Is Smith daft?


subpage of iccf-21/abstracts/review/

Overall reaction to this presentation is in a blog post. This review goes over each slide with comments, and may seem overly critical. However, from the post:

. . . this is better hot-hydrogen LENR work than I’ve seen anywhere before. 


Research Status of Nano-Metal Hydrogen Energy

Akito Takahashi1, Akira Kitamura16, Koh Takahashi1, Reiko Seto1, Yuki Matsuda1, Yasuhiro Iwamura4, Takehiko Itoh4, Jirohta Kasagi4, Masanori Nakamura2, Masanobu Uchimura2, Hidekazu Takahashi2,
Shunsuke Sumitomo2, Tatsumi Hioki5, Tomoyoshi Motohiro5, Yuichi Furuyama6, Masahiro Kishida3,
Hideki Matsune3
1Technova Inc., 2Nissan Motors Co., 3Kyushu University, 4Tohoku University, 5Nagoya University and
6Kobe University

Two MHE facilities at Kobe University and Tohoku University and a DSC (differential
scanning calorimetry) apparatus at Kyushu University have been used for excess-heat
generation tests with various multi-metal nano-composite samples under H(or D)-gas
charging. Members from 6 participating institutions have joined in planned 16 times
test experiments in two years (2016-2017). We have accumulated data for heat generation
and related physical quantities at room-temperature and elevated- temperature conditions,
in collaboration. Cross-checking-style data analyses were made in each party and
compared results for consistency. Used nano-metal composite samples were PS(Pd-SiO2)
-type ones and CNS(Cu-Ni-SiO2)-type ones, fabricated by wet-methods, as well as PNZ
(Pd-Ni-Zr)-type ones and CNZ(Cu-Ni-Zr)-type ones, fabricated by melt-spinning and
oxidation method. Observed heat data for room temperature were of chemical level.

Results for elevated-temperature condition: Significant level excess-heat evolution data
were obtained for PNZ-type, CNZ-type CNS-type samples at 200-400℃ of RC (reaction
chamber) temperature, while no excess heat power data were obtained for single nanometal
samples as PS-type and NZ-type. By using binary-nano-metal/ceramics-supported
samples as melt-span PNZ-type and CNZ-type and wet-fabricated CNS-type, we
observed excess heat data of maximum 26,000MJ per mol-H(D)-transferred or 85 MJ
per mol-D of total absorption in sample, which cleared much over the aimed target value
of 2MJ per mol-H(D) required by NEDO. Excess heat generation with various Pd/Ni
ratio PNZ-type samples has been also confirmed by DSC (differential scanning
calorimetry) experiments, at Kyushu University, using very small 0.04-0.1g samples at
200 to 500℃ condition to find optimum conditions for Pd/Ni ratio and temperature. We
also observed that the excess power generation was sustainable with power level of 10-
24 W for more than one month period, using PNZ6 (Pd1Ni10/ZrO2) sample of 120g at
around 300℃. Detail of DSC results will be reported separately. Summary results of
material analyses by XRD, TEM, STEM/EDS, ERDA, etc. are to be reported elsewhere.




  • Page 1: ResearchGate cover page
  • Page 2: Title
  • Page 3: MHE Aspect: Anomalously large heat can be generated by the
    interaction of nano-composite metals and H(D)-gas.
  • Page 4Candidate Reaction Mechanism: CCF/TSC-theory by Akito Takahashi

This is a summary of Takahashi TSC theory. Takahashi found that the rate of 3D fusion in experiments where PdD was bombarded by energetic deuterons was enhanced 10^26, as I recall, over naive plasma expectation. This led him to investigate multibody fusion. 4D, to someone accustomed to thinking of plasma fusion, may seem ridiculously unlikely; however, this is actually only two deuterium molecules. We may image two deuterium molecules approaching each other in a plasma and coming to rest at the symmetric position as they are slowed by repulsion of the electron clouds. However, this cannot result in fusion in free space, because the forces would dissociate the molecules, they would slice each other in two. However, in confinement, where the dissociating force may be balanced by surrounding electron density, it may be possible. Notable features: the Condensate that Takahashi predicts includes the electrons. Fusion then occurs by tunneling to 100% within about a femtosecond; Takahashi uses Quantum Field Theory to predict the behavior. To my knowledge, it is standard QFT, but I have never seen a detailed review by someone with adequate knowledge of the relevant physics. Notice that Takahashi does not detail how the TSC arises. We don’t know enough about the energy distribution of deuterium in PdD to do the math. Because the TSC and resulting 8Be are so transient, verifying this theory could be difficult.

Takahashi posits a halo state resulting from this fusion that allows the 8Be nucleus, with a normal half-life of around a femtosecond, to survive long enough to radiate most of the energy as a Burst of Low-Energy Photons (BOLEP), and suggests a residual energy per resulting helium nucleus of 40 – 50 KeV, which is above the Hagelstein limit, but close enough that some possibility remains. (This energy left is the mass difference of the ground state for 8Be over two 4He nuclei.)

Notice that Takahashi does not specify the nature of the confining trap that allows the TSC to arise. From experimental results, particularly where helium is found, the reaction takes place on the surface, not in the bulk, so the trap must only be found on (or very near) the surface. Unless a clear connection is shown, this theory is dicta, not really related to the meat of the presentation, experimental results.

  • Page 5: Comparison of Energy-Density for Various Sources.  We don’t need this fluff. (The energy density, if “cold fusion” is as we have found, is actually much higher, because it is a surface reaction, but density is figured for the bulk. Bulk of what? Not shown. Some LENR papers present a Rankin diagram, which is basically the same. It’s preaching to the choir; it was established long ago and is not actually controversial: if “cold fusion” is real, it could have major implications, providing practical applications can be developed, which remains unclear. What interests us (i.e., the vast majority of those at an ICCF conference) is two-fold: experimental results, rather than complex interpretations, and progress toward control and reliability.
  • Page 6: Comparison of Various Energy Resources. Please, folks, don’t afflict this on us in what is, on the face, an experimental report. What is given in this chart is to some extent obvious, to some extent speculative. We do not know the economics of practical cold fusion, because it doesn’t exist yet. When we present it, and if this is seen by a skeptic, it confirms the view that we are blinded by dreams. We aren’t. There is real science in LENR, but the more speculation we present, the more resistance we create. Facts, please!!!
  • Page 7. Applications to Society. More speculative fluff. Where’s the beef? (I don’t recall if I was present for this talk. There was at least one where I found myself in an intense struggle to stay awake, which was not helped by the habit of some speakers to speak in a monotone, with no visual or auditory cues as to what is important, and, as untrained speakers (most in the Conference, actually), no understanding of how to engage and inspire an audience. Public speaking is not part of the training of scientists, in general. Some are good at it and become famous. . . . ) (I do have a suggested solution, but will present it elsewhere.)
  • Page 8. Required Conditions to Application: COP, E-density, System-cost. More of the same. Remarkable, though: The minimum power level for a practical application shown is 1 KW. The reported present level is 5 to 20 W. Scientifically, that’s a high level, of high interest, and we are all eager to hear what they have done and found. However, practically, this is far, far from the goal. Note that low power, if reliable, can be increased simply by scaling up (either making larger reactors or making many of them; then cost may become an issue. This is all way premature, still.) By this time, if I was still in the room, I’m about to leave, afraid that I’ll actually fall asleep and start snoring. That’s a bit more frank and honest with our Japanese guest than I’d want to be. (And remember, my sense is that Takahashi theory is the strongest in the field, even if quite incomplete. Storms has the context end more or less nailed, but is weak on theory of mechanism. Hagelstein is working on many details, various trees of possible relevance, but still no forest.)

Page 9. NEDO-MHE Project, by6Parties.
Project Name: Phenomenology and Controllability of New
Exothermic Reaction between Metal and Hydrogen
Parties:Technova Inc., Nissan Motors Co., Kyushu U., Tohoku U., Nagoya U., Kobe U.
Period: October 2015 to October 2017 R. Fund:ca. 1.0 M USD
Aim :To verify existence of anomalous heat effect (AHE) in nano-metal and hydrogen-gas interaction and to seek controllability of effect
Done:New MHE-calorimetry system at Tohoku U. Collaboration experiments to verify AHE. Sample material analyses before and after runs. Study for industrial application

Yay! I’ll keep my peace for now on the “study for industrial application.” Was that part of the charge? It wasn’t mentioned.

Page 10. Major Results Obtained. 
1. Installation of new MHE calorimetry facility and collaborative tests
2. 16 collaborative test experiments to have verified the existence of AHE (Pd-Ni/ZrO2, CuNi/ZrO2)
3. generation of 10,000 times more heat than bulk-Pd H-absorption heat, AHE by Hydrogen, ca. 200 MJ/mol-D is typical case
4. Confirmation of AHE by DSC-apparatus with small samples

“Typical case” hides the variability. The expression of results in heat/moles of deuterium is meaningless without more detail. Not good. The use of differential scanning calorimetry  is of high interest.

  • Page 11. New MHE Facility at ELPH Tohoku U. (schematic) (photo)
  • Page 12. MHE Calorimetry Test System at Kobe University, since 2012 (photo)
  • Page 13. Schematics of MHE Calorimetry Test System at Kobe University, since 2012

System has 5 or 6 thermocouples (TC3 is not shown).

  • Page 14. Reaction Chamber (500 cc) and filler + sample; common for Tohoku and Kobe

Reaction chamber is the same for both test systems. It contains 4 RTDs.

  • Page 15. Melt-Spinning/Oxidation Process for Making Sample
  • Page 16Atomic composition for Pd1Ni10/ZrO2 (PNZ6, PNZ6r) and Pd1Ni7/ZrO2 (PNZ7k)
  • Page 17. 6 [sic, 16?] Collaborative Experiments. Chart showing results from 14 listed tests, 8 from Kobe, 5 from Tohoku, and listing one DSC study from Kyushu.

These were difficult to decode. Some tests were actually two tests, one at RT (Room Temperature) and another at ET (Elevated Temperature). Other than the DSC test, the samples tested were all different in some way, or were they?

  • Page 18. Typical hydrogen evolution of LM and power in PNZ6#1-1 phase at Room Temp. I have a host of questions. “LM” is loading (D/Pd*Ni), and is taken up to 3.5. Pressure?

“20% difference between the integrated values evaluated from TC2 and those
from RTDav : due to inhomogeneity of the 124.2-g sample distributed in the
ZrO2 [filler].” How do we know that? What calibrations were done? Is this test 14 from Page 17? If so, the more optimistic result was included in the table summary. The behavior is unclear.

Page 19. Using Same Samples divided(CNZ5=Cu1Ni7/ZrO2)100g, parallel tests. This would be test 4 (Kobe, CNZ5), test 6 (Tohoku, CNZ5s)

The labs are not presenting data in the same format. It is unclear what is common and what might be different. The behaviors are not the same, regardless, which is suspicious if the samples are the same and they are treated the same. The difference, then, could be in the calorimetry or other aspects of the protocol not controlled well. The input power is not given in the Kobe plot. (This is the power used to maintain elevated temperature). It is in the Tohoku plot, it is 80 W, initially, then is increased to 134 W.

“2~8W of AHE lasted for a week at Elevated Temp. (H-gas)” is technically sort-of correct for the Kobe test (i.e., between 2 and 8 watts of AHP (this is power, not energy)  started out at 8 W average and declined steadily until it reached 2 W after 3.5 days. Then it held at roughly this level for three days, then there is an unexplained additional brief period at about 4 W. The Tohoku test showed higher power, but quite erratically. After almost rising to 5 W, for almost a day, it collapsed to zero, then rose to 2 W. Then, if this is plotted correctly, the input power was increased to raise the temperature. (for an environmental temperature, which  this was intended to be, the maintenance power is actually irrelevant, it should be thermostatically controlled — and recorded, of course. Significant XP would cause a reduction in maintenance power, as a check. But if they used constant maintenance power, then we would want to know the environment temperature, which should rise with XP. But only a little in this experiment, XP being roughly 2% of heating power. At about 240 hours, the XP jumped to about 3.5 W. I have little confidence in the reliability of this data, without knowing much more than is presented.

Page 20. 14-th Coll. Test(PNZ6): Largest AHE Data 

“Wex: 20W to 10W level excess-power lasted for a month.” This is puffery, cherry-picking data from a large set to create an impressive result. Yes, we would want to know the extremes, but both extremes, and we would even more want to know what is reliable and reproducible. This work is still “exploratory,” it is not designed, so far, to develop reliability and confidence data. The results so far are erratic, indicating poor control. Instead of using one material — it would not need to be the “best” — they have run a modest number of tests with different materials. Because of unclear nomenclature, it’s hard to say how many were different. One test is singled out as being the same material in two batches. I’d be far more interested in the same material in sixteen batches, all with an effort that they be thoroughly mixed, as uniform as possible, before dividing them. Then I’d want to see the exact same protocol run, as far as possible, in the sixteen experiments. Perhaps the only difference would be the exact calorimetric setup, and I’d want to see dummy runs in both setups with “fuel” not expected to be nuclear-active.

One of the major requirements for calorimetric work, too often neglected, is to understand the behavior of the calorimeter thoroughly, across the full range of experimental conditions. This is plodding work, boring. But necessary.

  • Page 21. Excess power, Wex, integrated excess heat per metal atom, Ea (keV/a-M), and
    excess energy per hydrogen isotope atom absorbed/desorbed, ηav,j (keV/aD(H)),
    in RT and ET phases evaluated by TC2 temp. Re-calcined PNZ6.
  • Page 22. Peculiar evolution of temperature in D-PNZ6r#1-2 phase: Re-calcined PNZ6
  • Page 23. PNZ5r sample: baking (#0) followed by #1 – #3 run (Rf = 20 ccm mostly)
  • Page 24Local large heat:Pd/Ni=1/7, after re-calcination of PNZ5. Uses average of RTDs rather than flow thermocouple.
  • Page 25. Excess heat-power evolution for D and H gas: Re-calcined PNZ5.
  • Page 26. About 15 cc 100g PNZ5r powder + D2 gas generated over 100 MJ/mol-D anomalous excess heat:
    Which is 5,000 times of 0.02 MJ/mol-D by PdD formation! More fluff, that assumes there is no systematic error, distracting from the lack of a consistent experiment repeated many times, and that this is not close to commercial practicality. I was really hoping that they had moved into reliability study.
  • Page 27. Radiations and flow rate of coolant BT400; n and gamma levels are natural BG. No radiation above background.
  • Page 28. Excess Power Evolution by CNS2(Cu1Ni7/meso-silica). Appears to show four trials with that sample, from 2014, i.e., before the project period. Erratic results.
  • Page 29. Sample Holder/Temperature-Detection of DSC Apparatus Kyushu University; M. Kishida, et al. photo)
  • Page 30. DSC Measuring Conditions: Kyushu University.
    Sample Amount: 40~100 mg
    Temperature : 25 ~ 550 ℃
    Temp. Rise Rate: 5 ℃/min
    Hydrogen Flow: 70 ml/min
    Keeping Temp.: 200~550 ℃,mainly 450℃
    Keeping Period: 2 hr ~ 24 hr,mostly 2hr
    Blank Runs : He gas flow
    Foreground Runs: H2 gas flow

See Wikipedia, Differential Scanning Calorimetry. I don’t like the vague variations: “mainly,” “mostly.” But we’ll see.

  • Page 31. DSC Experiments at Kyushu University. No Anomalous Heat was observed for Ni and ZrO2 samples.
  • Page 32. DSC Experiments at Kyushu University. Anomalous Heat was observed for PNZ(Pd1Ni7/ZrO2 samples. Very nice, clear. 43 mW/gram. Consistency across different sample sizes?
  • Page 33. Results by DSC experiments: Optimum running temperature For Pd1Ni7/zirconia sample.
  • Page 34. Results by DSC experiments; Optimum Pd/Ni Ratio. If anyone doesn’t want more data before concluding that 1:7 is optimal, raise your hand. Don’t be shy! We learn fastest when we are wrong. They have a decent number of samples at low ratio, with the heat increasing with the Ni, but then only one data point above the ratio of 7. That region is of maximum interest if we want to maximize heat. One point can be off for many reasons, and, besides, where is the actual maximum? As well, the data for 7 could be the bad point. It actually looks like the outlier. Correlation! Don’t leave home without it. Gather lots of data with exact replication or a single variable . Science! Later, on P. 44, Takahashi provides a possible explanation for an optimal value somewhere around 1:7., but the existence of an “explanation” does not prove the matter.
  • Page 35. Summary Table of Integrated Data for Observed Heat at RT and ET. 15 samples. The extra one is PNZt, the first listed.
  • Page 36. Largest excess power was observed by PNZ6 (Pd1Ni10/ZrO2) 120g.  That was 25 W. This contradicts the idea that the optimal Pd/Ni ratio is 1:7, pointing to a possible flyer in the DSC data at Pd/Ni 1:7, which was used for many experiments. It is possible from the DSC data, then, that 100% Ni would have even higher power results (or 80 or 90%). Except for that single data point, power was increasing with Ni ratio, consistently and clearly. (I’d want to see a lot more data points, but that’s what appears from what was done.) This result (largest) was consistent between #1 and #2. I’m assuming that (“#”) means two identical subsamples.
  • Page 37. Largest heat per transferred-D, 270 keV/D was observed by PNZ6r (re-oxidized). This result was not consistent between #1 and #2.
  • Page 38. STEM/EDS mapping for CNS2 sample, showing that Ni and Cu atoms are included in the same pores of the mp-silica with a density ratio approximately equal to the mixing ratio.
  • Page 39. Pd-Ni nano-structure components are only partial [partial what?] (images)
  • Page 40. Obtained Knowledge. I want to review again before commenting much on this. Optimal Pd/Ni was not determined. The claim is no XE for pure Pd. I don’t see that pure Ni was tested. (I.e., PZ) Given that the highest power was seen at the highest Ni:Pd (10), that’s a major lacuna.
  • Page 41. 3. Towards Application(next-R&D).
    Issue / Subjective [Objective?] / Method
    Increase Power / Present ca. 10W to 500-1000W or more / Increase reaction rate
    ・temperature, pressure
    ・increase sample nano
    ・high density react. site
    Enhance COP / Now 1.2; to 3.0~5.0
    Control / Find factors, theory / Speculation by experiments, construct theory
    Lower cost / Low cost nanocomposites / Optimum binary, lower cost fabrication

I disagree that those are the next phase. The first phase would ideally identify and confirm a reasonably optimal experiment. That is not actually complete, so completing it would be the next phase. This completion would use DSC to more clearly and precisely identify an optimal mixture (with many trials). A single analytical protocol would be chosen and many experiments run with that single mixture and protocol. Combining this with exploration, in attempt to “improve,” except in a very limited and disciplined way, will increase confusion. The results reported already show very substantial promise. 10-25 watts, if that can be shown to be reasonably reliable and predictable, is quite enough. Higher power at this point could make the work much more complex, so keep it simple.

Higher power then, could be easy, by scaling up, and then, as well, increasing COP could be easy by insulating the reactor to reduce heat loss rate. With sufficient scale and insulation, the reaction should be able to become self-sustaining, i.e., maintaining the necessary elevated environmental temperature with its own power.

Theory of mechanism is almost completely irrelevant at this point. Once there is an identified lab rat, then there is a test bed for attempting to verify — or rule out — theories. Without that lab rat, it could take centuries. At this point, as well, low cost (i.e., cost of materials and processing) is not of high significance. It is far more important at this time to create and measure reliability. Once there is a reliable experiment, as shown by exact and single-variable replications, then there is a standard to apply in comparing variables and exploring variations, and cost trade-0ffs can be made. But with no reliable reactor, improving cost is meaningless.

This work was almost there, could have been there, if planned to complete and validate a lab rat. DSC, done just a little more thoroughly, could have strongly verified an optimal material. It is a mystery to me why the researchers settled on Pd/Ni of 7. (I’m not saying that’s wrong, but it was not adequately verified, as far as what is reported in the presentation.

Within a design that was still exploratory, it makes sense, but moving from exploration to confirmation and measuring reliability is a step that should not be skipped, or the probability is high that millions of dollars in funding could be wasted, or at least not optimally used. One step at a time wins, in the long run.


  • Page 42. Brief View of Theoretical Models, Akito Takahashi, Professor Emeritus Osaka U. For appendix of 2016-9-8 NEDO hearing. (title page)
  • Page 43. The Making of Mesoscopic Catalyst To Scope CMNR AHE on/in Nano-Composite particles.
  • Page 44. Binary-Element Metal Nano-Particle Catalyst. This shows the difference between Ni/Pd 3 and Ni/Pd 7, at the size of particle being used. An optimal ratio might vary with particle size, following this thinking. Studying this would be a job for DSC.
  • Page 45SNH will be sites for TSC-formation. To say that more generically, these would be possible Nuclear Active environment (NAE). I don’t see that “SNH” is defined, but it would seem to refer to pores in a palladium coating on a nickel nanoparticle, creating possible traps.
  • Page 46. Freedom of rotation is lost for the first trapped D2, and orthogonal coupling
    with the second trapped D2 happens because of high plus charge density localization
    of d-d pair and very dilute minus density spreading of electrons. Plausible.
  • Page 47. TSC Langevin Equation. This equation is from “Study on 4E/Tetrahedral Symmetric Condensate Condensation Motion by Non-Linear Lengevin Equation,” Akito Takahashi and Norio Yabuuchi, in Low Energy Nuclear Reactions Sourcebook, American Chemical Society and Oxford University Press, ed. Marwan and Krivit (2008) — not 2007 as shown. See also “Development status of condensed cluster
    fusion theory” Akito Takahashi, Current Science, 25 February, 2015, and Takahashi, A.. “Dynamic Mechanism of TSC Condensation Motion,” in ICCF-14, 2008.
  • Page 48. (plots showing simulations, first, oscillation of Rdd (d-d separation in pm) and Edd  (in ev), with a period of roughly 10 fs, and, second, “4D/TSC Collapse”, which takes about a femtosecond from a separation of about 50 pm to full collapse, Rdd shown as 20 fm.)
  • Page 49. Summary of Simulation Results. for various multibody configurations. (Includes muon-catalyzed fusion.)
  • Page 50.  Trapped D(H)s state in condensed cluster makes very enhanced fusion rate. “Collision Rate Formula UNDERESTIMATES fusion rate of steady molecule/cluster/” Yes, it would, i.e., using plasma collision rates.
  • Page 51. This image is a duplicate of Page 4, reproduced above.
  • Page 52. TSC Condensation Motion; by the Langevin Eq.: Condensation Time = 1.4 fs for 4D and 1.0 fs for 4H Proton Kinetic Energy INCREASES as Rpp decreases.
  • Page 53. 4H/TSC will condense and collapse under rather long time chaotic oscilation Near weak nuclear force enhanced p-e distance.
  • Page 544H/TSC Condensation Reactions. collapse to 4H, emission of electron and neutrino (?) to form 4Li*, prompt decay to 3He + p. Color me skeptical, but maybe. Radiation? 3He (easily detectable)?
  • Page 55. Principle is Radiation-Less Condensed Cluster Fusion. Predictions, see “Nuclear Products of Cold Fusion by TSC Theory,” Akito Takahashi, J. Condensed Matter Nucl. Sci. 15 (2015, pp 11-22).

Ask ICCF-21 Questions Here


I am taking questions for conference presenters on this page. You may request that a question be addressed to a specific speaker or presenter, and I will communicate the question and I will bring answers back to this blog. The Conference is shaping up to be a breakthrough event. There is far more major CMNS activity under way than is generally publicly announced.

Comments below may be entered anonymously. All comments from someone who has not been approved before must be approved, so be patient, and I am very, very busy with the Conferencem there are hundreds of people to listen to and talk with. If a real email address is entered, it will not be published, and I will be able to communicate directly, and intend to follow up on everything, eventually.

ICCF-21 Detailed Agenda

IICF-21 Detailed Agenda =  (original on ICCF-21 web site)

SHORT COURSE SPEAKERS (Sunday 3 June 2018)

  • 10:00 Introduction and Issues, David Nagel
  • 10:40 Electrochemical Loading, Michael McKubre
  • 11:20 Gas Loading, Jean-Paul Biberian
  • 12:00 Lunch
  • 13:30 Calorimetry and Heat Data, Dennis Letts
  • 14:10 Transmutation Data, Mahadeve (Chino) Srinivasan
  • 14:50 Break
  • 15:10 Materials Challenges, M. Ashraf Imam
  • 15:50 Theoretical Considerations, Peter Hagelstein
  • 16:30 Commercialization, Dana Seccombe & Steve Katinsky
  • 17:00 (end)


18:00 Reception

20:00 Lounge



subpage of iccf-21/abstracts/review/

Amini-Farzan-1 POSTER Warp Drive Hydro Model For Interactions Between Hydrogen and Nickel

The effects of infinity can be studied in hyperbolic model.

Perhaps something has been missed in translation. Warp drive? Hello?

Perhaps the effects of hyperbole are infinitesimal, compared to infinity. Anything real is.


subpage of iccf-21/abstracts/review/

Alexandrov-Dimiter-1 Experiment and Theory Th 1:52 Nuclear fusion in solids – experiments and theory

This calls itself about “low temperature nuclear reaction,” but appears to be reporting 3He and 4He from plasma interactions, I don’t find it completely clear (some is solid state, some is gas phase. “Heavy electron” theory is proposed, whereas heavy electrons would be expected to be like muons, creating the same branching ratio. It’s formatted as a wall of text, with repetitious excuses as to why this or that wasn’t seen. What, exactly *was* seen, and why should be think this is significant?

From an altitude

Thanks to the generosity of donors to Infusion Institute, I’m airborne on my way to Denver, and while I’m a dedicated skinflint, and Southwest charges $8 for in-flight internet access, I decided to pay it, and gain three hours of work on the blog. I’m reading the ICCF-21 abstracts and will make short reviews as I slog through them ah, read them with intense fascination and anticipation. I’ll be at the Conference site tomorrow, all day. Some of those with large hairpieces (hah! big wigs) will be arriving tomorrow evening. I’ll be in the Short Course on Sunday. It is being guided by the best scientists in the field, this should be Fun! Yay,Fun!

The first abstract I’ve read is:


Cold fusion: superfluidity of deuterons.
Afanasyev S.B.

Saint-Petersburg, Russian Federation
The nature of cold fusion (CF) is considered. It is supposed that the reaction of deuterons merger takes place due to one deuteron, participating in the superfluidity motion, and one deuterons, not participating in the superfluidity motion, participate in the reaction. The Coulomb barrier is
overcomed due to the kinetic energy of the Bose-condensate motion is very large. The Bosecondensate forms from delocalized deuterons with taking into account that the effective mass of delocalized deuterons is smaller than the free deuterons mass.


Poster session

Just what we needed!! 28 years of theory formation has done nothing to create what the field needs. However, I consider that what the theoreticians are doing is practicing for the opportunity that will open up when we have enough data about the actual conditions of cold fusion. This paper, I categorize with Kim and Takahashi as proposing fusion through formation of a Bose-Einstein Condensate. Actually understanding the math is generally beyond my pay grade, and my big hope is that the theoreticians will start to criticize — constructively, of course — each other’s work. Until then, I’m impressed that some physicists with chops and credentials are willing to look at this and come up with ideas that, at least, use more-or-less standard physics, extending it into some unknown territory.

The standard reaction to BEC proposals is something like: You HAVE GOT to be kidding! BECs at room temperature??? The temperature argument applies to large BECS, small ones might exist under condensed matter conditions. But that is a problem for this particular theory, which, to distribute the energy and stay below the Hagelstein limit of 10 keV, requires energy distibution among well over a thousand atoms.

Nevertheless, there is this thing about the unknown. It’s unknown!  From Sherlock Holmes, when every possible explanation has been eliminated, it must be an impossible one! Or something like that. I disagree with Holmes, because the world of possible explanations is not limited, we cannot possibly have eliminated all of them. Some explanations become, with time and extensive study, relatively impossible. I.e, fraud  is always possible with a single report, and becomes exponentially less likely with multiple apparently independent reports. Systematic error remains possible until there are substantial and confirmed correlations.



subpage of iccf-21/abstracts/review/

Afanasyev-Sergei-1 POSTER Cold fusion: superfluidity of deuterons

Afanasyev S.B.
Saint-Petersburg, Russian Federation
Email: serg_af@list.ru
The nature of cold fusion (CF) is considered. It is supposed that the reaction of deuterons merger
takes place due to one deuteron, participating in the superfluidity motion, and one deuterons, not
participating in the superfluidity motion, participate in the reaction. The Coulomb barrier is
overcomed due to the kinetic energy of the Bose-condensate motion is very large. The Bosecondensate
forms from delocalized deuterons with taking into account that the effective mass of
delocalized deuterons is smaller than the free deuterons mass.


Posits Bose-Einstein Condensate to overcome Coulomb barrier, energy is distributed among all atoms in the Condensate. Explains reaction rate and helium as product. Class with Kim and Takahashi.



List of apparent poster abstracts. Some authors who are scheduled to speak may be missing from this list because of how it was compiled.

Afanasyev-Sergei-1 Cold fusion: superfluidity of deuterons
Amini-Farzan-1 Warp Drive Hydro Model For Interactions Between Hydrogen and Nickel
Anderson-Paul-1 The SAFIRE Project – An overview
Barot-Shriji-1 Flow Calorimetry Design for Elevated Temperature Experiments witih Deuterium
Beiting-Edward-2 Generation of High-Temperature Samples and Calorimetric Measurement of Therma
Bergschneider-Matthew-1 Study of a Calorimety Apparatus utilizing Radiation based Heat Transfer
Blake-Russ-2 Further Foundations of Fusion
Bowen-NL-1 A Simple Calculation of the Inter-Nucleon Up-to-Down Quark Bond and its Implications for Nuclear Binding
Egely-George-1 Electric Energy Generation by LENR
Fomitchev-Zamilov-Max-2 Reliable Neutron and Gamma Radiation Detection
fredericks-keith-1 Elliptical tracks and magnetic monopoles
Gibson-Martin-1 A Geometric Understanding of Low Energy Nuclear Reactions in the Palladium-Deuterium Lattice
Gordon-Frank-1 Real-time Instrumentation and Digital Processing for LENR Characterization
Grimshaw-Thomas-1 Documentation and Archives of 29 Years of LENR Research by Dr. Edmund Storms
Gutzmann-Emma-GWU-1 Parametric experimental studies of Ni-H electrochemical cells
Hagelstein-Peter-3 Phonon-nuclear coupling matrix element for the low energy E1 transition in Ta-181 and applications
Kaal-Edo-1 The Structured Atom Model – SAM
Kornilova-Alla-1 Stimulation of LENR in Hydroborate Minerals Under the Action of Distant High-Frequency Thermal Waves
Lomax-Abd-ulRahman-1 Correlation and cold fusion
Meyer-Jacob-1 On the Oxidation of Palladium
Miles-Melvin-2 Calorimetric Insights From Fleschmann Letters
Miles-Melvin-3 No Steady State For Open Isoperibolic Calorimetry
Mosier-Boss-Pamela-2 Overview of Pd/D Co-deposition
Olafsson-Sveinn-2 Adler-Bill-Jakiw anomaly in electroweak interactions, the 3p+  3L* process and links to spontaneous UHD decay and transmutation process
Olafsson-Sveinn-3 Volcanism in Iceland, Cold fusion and Rydberg matter
Olafsson-Sveinn-4 Conductivity of Rydberg matter
Olafsson-Sveinn-5 Rydberg matter experimental setup in Iceland
Papadatos-Gabriel-GWU-1 Electrical, thermal and chemical simulations of Ni-H electrochemical cells
Plekhanov-VG-1 A possible signature of neutron quarks – lepton interaction in solids
Prevenslik-Thomas-2 X-ray emission in LENR by Zero Point Energy or simple QED?
Ruer-Jacques-1 Chemical Heat Generation in LENR
Scholkmann-Felix-GWU-1 Complex current fluctuations in Ni-H electrochemical experiments: Characterization using non-liner signal analysis
Storms-Edmund-3 The strange behavior of catalysts made from Pd or Pt applied to Al2O3
Stringham-Roger-2 A Deuteron Plasma Driven to Neutrality and 4He
Tarassenko-Gennadiy-1 The Mechanism of Formation of LENR in Earth’s Crust
Vysotskii-Vladimir-3 Generation and Registration of Undamped Temperature Waves at Large Distance in LENR Related Experiments
Vysotskii-Vladimir-4 Controlled transmutation of Na, P and Mn to Fe isotopes in D2O and H2O during growth of yeast Saccharomyces cerevesiae
Whitehouse-Harper-1 Electrochemical Immittance and Transfer-function Spectroscopy applied to LENR
Zeiner-Gundersen-Sindre-2 Distance dependency of spontaneous decay signal from ultra dense hydrogen source
Zeiner-Gundersen-Sindre-3 Pulse shape and PMT stabilization period from spontaneous signal from a ultra dense hydrogen source
Zhang-Hang-1 Experimental on hydrogen carrying metal glow discharge
Ziehm-Erik-1 Detecting Charged Particles in LENR Applications using CR-39
Zuppero-Anthony-1 Electron Quasiparticle Catalysis of Nuclear Reactions


Subpage of iccf-21/abstracts/

This page will collect reviews of ICCF-21 presentations. The intention is to support study, commentary, an review. Authors are also welcome and encouraged to issue corrections or clarifications.

The abstracts display a wide range of quality and usefulness. Those two characteristics are personal assessments, not fact. Comments are welcome.

The abstracts page has links to audio files for many presentations, and links to documents, when available.

(If a reader wants to comment on a presentation that is not listed below, request a page be created with a comment below. These requests will be deleted when actioned.)

List of review pages started:


This is a schedule of events at ICCF-21. The original schedule as published is here. 

Below are titles of submitted abstracts from authors speaking, best guess (since some speakers have more than one abstract and there are other ambiguities.) Times are estimated by dividing session time by the number of speakers in a session.

This schedule was prepared from information available before the Conference. The actual schedule was different in some ways.

Links are to the abstract. See the List of Abstracts.

8:30 OPENING  
8:30 Katinsky K-1 INTRODUCTION LEAP: The LENRIA Experiment and Analysis Program
9:00 Darden   KEYNOTE Industrial Heat
9:30 McKubre M-1 TECHNICAL PERSPECTIVE The Fleischmann-Pons heat and ancillary effects. What do we know, and why? How might we proceed?
10:00 BREAK  
10:30 Letts L-1 Building and Testing a High Temperature Seebeck Calorimeter
11:00 Mizuno M-1 Excess heat generation by simple treatment of reaction metal in hydrogen gas
11:30 Miley M-1 Progress in Cluster Enabled LENR
12:00 LUNCH  
1:30 Takahashi T-1 Research Status of Nano-Metal Hydrogen Energy
2:00 Iwamura I-1 Anomalous Heat Effects Induced by Metal Nanocomposites and Hydrogen Gas
2:30 Hioki H-1 XRD and XAFS Analyses for Metal Nanocomposites Used in Anomalous Heat Effect Experiments
3:00 BREAK  
3:30 Hagelstein H-1 Statistical mechanics models for the PdH, and PdD, phase diagram with both O-site and T-site occupation
3:50 Vysotskii V-2 Effective LENR in Weakly Ionized Gas Under the Action of Optimal Pulsed Magnetic Fields and Lightning (Theory and Experiments)
4:10 Zuppero Z-1 Electron Quasiparticle Catalysis of Nuclear Reactions
4:30 Cook C-1 The “Renaissance” in Nuclear Physics: Low-energy nuclear reactions and transmutations
5:00 POSTERS  
8:00 Tanzella T-1 Nanosecond Pulse Stimulation in the Ni-H2 System.
8:24 Swartz S-1 Aqueous and Nanostructured CF/LANR Systems Each Have Two Electrically Driven Modes
8:48 Celani C-1 Steps to identification of main parameters for AHE generation in submicrometric materials: measurements by isoperibolic and air-flow calorimetry
9:12 Staker S-1 Coupled Calorimetry and Resistivity Measurements, in Conjunction with an Emended and More Complete Phase Diagram of the Palladium – Isotopic Hydrogen System
9:36 Dagget D_1 Positive Result of a Laser-Induced LENR Experiment
10:00 BREAK  
10:30 Biberian B-1 Anomalous Isotopic Composition of Silver in a Palladium Electrode
10:52 Fomitchev F-1 Synthesis of Lanthanides on Nickel Anode
11:15 Lu L-1 Photocatalytic hydrogen evolution and induced transmutation of potassium to calcium via low-energy nuclear reaction (LENR) driven by visible light.
11:37 Nikitin N-1 Impact of Effective Microorganisms on the Activity of 137Cs in Soil from the Exclusion Zone of Chernobyl NPP
12:00 LUNCH  
1:30 Czerski C-1 Influence of Crystal Lattice Defects and the Threshiold Resonance on the Deuteron-Deuteron Reaction Rates at Room Temperature
1:52 Olafsson O-1 What is Rydberg Matter and Ultra-Dense Hydrogen?
12:15 Zeiner-Gundersen Z-1 Hydrogen reactor for Rydberg Matter and Ultra Dense Hydrogen, a replication of Leif Holmid
12:37 Wood W Joseph Papp Nobel Gas Engine Shows Early LENR?
3:00 BREAK  
3:30 THEORY  
3:30 Li L-1 Resonant Surface Capture Model
3:52 Pallet P-1 On highly relativistic deep electrons
4:15 Stevenson S-1 Isotope Effects beyond the Electromagnetic Force: 1H and 2H in Palladium Exhibiting LENR
4:37 Dubinko D-1 Chemical and Nuclear Catalysis Mediated by the Energy Localization in Hydrogenated Crytals and Quasicrystals
8:00 Storms S-2 The Loading and Deloading Behavior of Palladium Hydride
8:24 Nee N-1 Lattice Confinement of Hydrogen in FCC Metals for Fusion Reaction
8:48 Hagelstein H-2 Phonon-mediated excitation transfer involving nuclear excitation
9:12 Imam I-1 Fabrication, Characterization, and Evaluation of Palladium-Born Alloys Use in LENR Experiments
9:36 Miles M-1 Excess Power Measurements For Palladium-Boron Cathodes
10:00 BREAK  
10:30 Egely E-2 Changes of Isotope Ratios in Transmutations
10:52 Metzler M-1 Observation of non-exponential decay of x-ray and γ lines from Co-57 on steel plates
11:15 McCarthy M-1 Light Hydrogen LENR in Copper Alloys
11:37 Roarty R-1 A Method to Initiate an LENR Reaction in an Aqueous Solution
12:00 LUNCH  
8:00 Beiting B-1 Investigation of the Nickel-Hydrogen Anomalous Heat Effect
8:24 Ramarao R-1 Observation of Excess Heat in Nickel – LAH System
8:48 Dong D-1 Temperature Dependence of Excess Heat in Gas-Loading Experiments
9:12 Kitagawa K-1 Direct Joule Heating of D-Loaded Bulk Pd Plates in Vaccum
9:36 Stringham S-1 Investigation of Cavitation Effects Related to LENR
10:00 BREAK  
10:30 Fowler F-1 Development of a Sensitive Detection system for the Measurement of Trace Amounts of He4 in Deuterium or Hydrogen
10:52 Higgins H-1 Modeling and Simulation of a Gas Discharge LENR Prototype
11:15 Kasagi K-1 Search for γ-ray radiation in NiCuZr nano-metals and H2 gas system generating large excess heat.
11:37 David D-1 Alternatives to Calorimetry
12:00 LUNCH  
1:30 Vysotskii V-1 Using the Method of Coherent Correlated States for Realization of Nuclear Interaction of Slow Particles with Crystals and Molecules
1:52 Alexandrov A-1 Nuclear fusion in solids – experiments and theory
2:15 Kovacs K-1 Electron mediated nuclear chain reactions
2:37 Brink B-1 LENR Catalyst Identification Model
3:00 BREAK  
3:30 THEORY  
3:30 Blake B-1 Understanding LENR Using QST
3:52 Hatt H-1 Cold Nuclear Transmutations Light Atomic Nuclei Binding Energy
4:15 Tanabe Ti-1 Plasmonic Field Enhancement on Planar Metal Surfaces
4:37 Yoshimura Y-1 Estimation of bubble fusion requirements during high-pressure, high-temperature cavitation
5:00 POSTERS  
7:00 BANQUET  
8:00 Storms  
8:30 Biberian  
9:00 Swartz  
9:30 Seccombe S-1 Experience with Semiconductor Technology Development Potentially Relevant to LENR
10:00 BREAK  
10:30 APPS & CLOSE  
10:30 Mosier-Boss M-1 Hybrid Fusion-Fission Reactor Using Pd/D Codeposition
10:52 Forsley F-1 Space Applications of a Hybrid Fusion-Fission Reactor
11:15 Meulenberg M-1 Nuclear-waste remediation with femto-atoms and femto-molecules
11:37 Nagel K-1 LEAP: The LENRIA Experiment and Analysis Program