Is cold fusion Natural?

A few days ago, the internet lit up with news of a new paper on cold fusion in Nature.

Revisiting the cold case of cold fusion

Google has been funding cold fusion research for the last several years. This project, though, was not publicized. The CMNS (Condensed Matter Nuclear Science) research community in general knew little about it, though there were hints and leaks. There is a National Geographic page that tells the story.

Cold fusion remains elusive—but these scientists may revive the quest

However, I’m going to start this series by revisiting an old editorial, 29 March, 1990, by David Lindley, then an associate editor of Nature. He wrote:

The embarrassment of cold fusion

This is best known for its last words:

Would a measure of unrestrained mockery, even a little unqualified vituperation, have speeded cold fusion’s demise?

This editorial was rife with the characteristics of pseudoskepticism, and even disparages real skepticism, essential to science. Real skepticism is open-minded, merely not easily convinced about “extraordinary claims.” But it does not reject those claims based on existing theory, because it is also skeptical that existing theory is universally true. (It is not so open-minded that we find brains on the floor. It will point out the obvious, but it is not a “believer” position.)

This was a year after the announcement by Fleischmann and Pons. By that time, there had been some reports and confirmations of nuclear effects, but it was all still very unsettled. However, Lindley writes as if cold fusion were preposterous, blatantly impossible.

But . . . what is “cold fusion?”

Pons and Fleischmann had actually claimed an “unknown nuclear reaction,” and their claim of “nuclear” was reasonable if they had made no major errors in their calorimetry, and they believed they had seen radiation (which was apparently artifact, error.)

Nevertheless, what they had seen, clear to them, was anomalous heat, at levels that they, as highly skilled chemists, could not explain with chemistry. That would remain a mystery and it still is a mystery, though aspects are now understood. It is not what Lindley imagined “cold fusion” would be, in many ways.

It was not until 1991 that Miles announced that he had found helium correlated with anomalous heat, which was stunning, as Huizenga noted. If this was confirmed, Huizenga wrote, it would explain one of the major mysteries of cold fusion, the nuclear product. However, Huizenga expected that this would not be confirmed, because “no gammas.”

And this shows how mind-locked Huizenga and many at the time were. Gammas are found with two-deuteron fusion, very strong gammas, if helium is the product, but two-deuteron fusion only rarely produces helium, and is a very well-understood reaction (though not entirely, and part of the new paper explores that).

If helium is the main product — it seems obvious in hindsight — the reaction is not two-deuteron fusion! What is it?

Lindley looks at some theories, but simply assumes, as Huizenga, that if this is fusion, it is fusion of two deuterons. That assumption was common, including probably with Pons and Fleischmann and others who supported “cold fusion.”

There is another reaction which may be possible that does not generate that very hot gamma. Cold fusion is taking place in condensed matter, not in a plasma, so more complex structures, including electrons, are possible. Lindley does consider Bose-Einstein Condensates, but only with two deuterons. Not with two deuterium molecules. If two molecules were to fuse, the product expected would be an isotope of beryllium, 4Be8, which will decay into two helium nuclei (2He4). No very hot gamma. While there are other problems to be solved with this theory, I won’t go into them, this may well be on the right track to the actual mechanism behind cold fusion.

But all this focus on theory lost the most important principle in science: Experiment is King, not Theory. The first question to have properly asked (and some did ask it) was not, “Is this fusion?”, but “Is there a real heat effect?” And then, what conditions cause the effect, what are associated and especially correlated effects, what data can we collect?

By focusing on fusion, and looking for “fusion products,” meaning neutrons and tritium, and then concluding, when these were not found, that the heat must be an error, scientists fooled themselves. And where they were considered experts, they also fooled others who trusted them.

Truly ironic is what Lindley remembered before making the vituperation comment:

Perhaps science has become too polite. Lord Kelvin dismissed the whole of geology because his calculations proved that the Sun could be no more than a few million years old; Ernest Rutherford is still remembered for his declaration that talk of practical atomic energy was “moonshine” — but the stature of neither man has been noticeably diminished by their errors, which were as magnificent as their achievements.  Kelvin and Rutherford had a common-sense confidence in the robustness of their judgements which the critics of cold fusion conspicuously lacked.

This is odd, looking at it now, knowing the history of cold fusion, and the very early comment of Steve Koonin at the APS conference in Baltimore, May, 1989:

My conclusion, based on my experience, my knowledge of nuclear physics, and my intuition, is that the experiments are just wrong. And that we’re suffering from the incompetence and perhaps delusion of Drs. Pons and Fleischmann.

It has been known for many years that the famous replication failures, that led to conclusions like that of Koonin, were based on a failure to set up the necessary conditions for the effect to be seen. That work is part of the corpus of evidence that is accepted as demonstrating how not to see the Fleischmann-Pons Heat Effect. The negative work was not experimentally “wrong.” They correctly reported that under the conditions they set up, no significant excess heat was observed, nor any nuclear product.

Lewis et al (Nature, 1989) reached a maximum “stoichiometry” (D/Pd ratio) of 80%, and there is no report of the FPHE below roughly 90% at initiation. The current report in Nature is very similar, except that the new authors are quite aware that they did not reach adequate loading, hence their call for more research.

Even reaching adequate loading is not enough. In SRI P14, a Fleischmann-Pons type cell was loaded for months to high loading, and a current protocol (ramping current up and then down) was run, while measuring “excess heat.” The same protocol was run three times. The first two times, nothing happened except a little more noise. The third time, there was clear excess heat, unmistakeable. All other conditions were the same. (And there was a hydrogen control in series, which shows no excess heat in all three runs.)

Something must happen to the material to change it. Loading and deloading palladium with deuterium puts it under stress, it can crack, and the latest thinking is that a new phase of the metal can form at high loading plus stress: super abundant vacancy (SAV) material, which can also load to a higher ratio.

Not all palladium is the same. Nobody has yet found a way to reliably create material that works immediately, or even that works at all. Some protocols are better than others, though, some show excess heat most of the time, but highly variable in amount. The evidence is strong that that the famous unreliability is due to not-understood material conditions.

Add to this the difficulties of calorimetry and the possibility of the file-drawer effect, and we have the Scientific Fiasco of the Century (Huizenga).

What is constant, though, where it has been measured, is that helium is found commensurate with anomalous heat.

That is so strong as evidence for the reality of the reaction that a jury could be convinced in a civil case with it, and possibly even in a criminal case.

I can think of no way that the helium could be consistently correlated with heat, across different protocols and conditions, in many experiments, other than being produced by the same reaction, nor have I seen any proposed that are consistent with the experimental conditions.

Heat is not going to make helium and helium is not going to make heat, if the heat is artifact (or even if not!) and if the helium were leakage or error, it would not be clearly correlated with heat, and the ratio would not so nicely approach that very special value, 23.8 MeV/4He, which is the thermodynamically necessary ratio for any reaction that converts deuterium to helium, regardless of mechanism, as long as there is no radiation loss, and there apparently is not anything significant.

I will examine the Lindley analysis in detail on a page, Lindley 1989.

This series will continue with Cold fusion is in our geography now.

 

My ideal is better than your reality

Much criticism is based on this comparison between real-world expression and the critic’s ideas, which, of course, may be revised, ad hoc.

This extends far outside science. Our ideas of perfect morality may be, for example, compared with the real behavior of (some) formal members of a religion, as if this demonstrates the superiority of our religion (or our ideals) over the other.

Because there was only one major and relatively deep critique of the Fleischmann-Pons calorimetry, published in a mainstream journal, one debate where there was original publication, critique (by D.R.O. Morrison), and author response, last year I began a page hierarchy to study the debate. The original as-published documents are behind a pay-wall, so I used copies from lenr-canr.org, that were based on a copy of the Morrison critique from sci.physics.fusion, an internet newsgroup, an obsolete form similar to a mailing list.

I first observed the issue of paper integrity in that the FP paper was not identical to the lenr-canr.org copy, which is likely a copy supplied to that library by an author. That is routine for lenr-canr copies of journal-published papers, for copyright reasons. The changes seemed quite minor (I will check this again more thoroughly). But for no decent reason, I did not check the Morrison critique against the later as-published version, and because that as-published version is not widely available, I preferred to use a version that anyone could check against my copy.

And that was an error. I was then distracted by other business, and as continued participation in the review did not appear, I did not return to my study of the debate until yesterday. I started by completing the adding of URLs for references, and then began going over the Morrison paper. It was full of errors or non sequiturs, immature argument, etc. And I started to wonder how this had gotten past peer review. Journals do not necessarily review critiques as strongly as original papers, and I have seen blatant errors in such critiques. Ordinarily, it is left to the authors to correct such errors. In one case where a blatant error was left standing (the Shanahan review in the Journal of Environmental Monitoring), the error was so ridiculously bad that the authors and others responding completely missed it, instead focusing on Shanahan’s conclusion from his seriously defective analysis. Argument from conclusion, naughty, naughty!)

The Morrison document from the newsgroup had this at the top:
5th DRAFT – Scientific Comments Welcomed.

There were no serious responses to that post, threaded with it. (There were other responses that can be found with some searching, made more complicated by some very poor Google archiving practices, what they did when they took over the newsgroups. I will cover other responses (some of it is interesting) elsewhere.

What Morrison was doing was, in part, to be commended, he was putting his work out there for critique before final submission. However, by this time, the scientific community had become highly polarized, and serious discussion, what might be called collaborative critique, good scientific process, was often missing. It still is, too often. Morrison’s critique would be useful, even if “wrong” in this way or that, because what Morrison wrote would be what many would think, but not necessarily write.

I came back to this issue because I noticed a mention of my study on lenr-forum.com. The remainder of this post is a detailed response to that. Continue reading “My ideal is better than your reality”

Looking for “boring,” finding gold

I’ve been spending most of my days, lately, compiling bibliographic material, and setting up archives of LENR conference papers, as well as a full LENR Library. Where I can find an on-line copy of the Proceedings, it’s easy, merely a bit time-consuming. In other cases proceedings may only exist in a few libraries, and it may take time to find those copies. Sometimes scans are made of books, but the cheap way of doing this, at $0.01 – $0.02 per page, involves destroying the book. These volumes, where they exist, may sell for on the order of $300. It is not necessary to destroy the book to read it, and if it can be read, it can be photographed, and that is now easy with smart phones. My 64 GB iPhone could hold high-resolution photos of every page of a 1000-page book, without breaking a sweat. I might get a little tired, I figure I could, with a simple setup, maybe 2 pages per minute. So 500 minutes for a 1000 page book, 8 hours. To avoid RSI, not less than two days. Doable. I will only do this if necessary, and will attempt to share the work.

All needed, perhaps, because nobody bothered to keep and make available original copies of computer files. Material is still being lost. As an example, abstracts and proceedings have recently disappeared from iscmns.org. Documents once hosted by newenergytimes.com have vanished. Sometimes these can be found on the internet archive, sometimes not.

Below, I report benefits of working with this material. Continue reading “Looking for “boring,” finding gold”

Being right is not enough

or How “fusion” created confusion.

We now have strong evidence that the Fleischmann-Pons Heat Effect, sometimes known as the Anomalous Heat Effect, is nuclear in nature and accomplishes the transmutation of deuterium into helium, as the main reaction generating heat, but this evidence was not available in the early days of the field. Skeptics and “believers” conspired (albeit not realizing what they were doing) to call what was actually observed — or claimed, and the two were heavily confused — by Pons and Fleischmann, “cold fusion.” Even when a little careful thought would have exposed the distinction.\

What Pons and Fleischmann observed, in experiments with extreme loading of palladium with deuterium, was anomalous heat, with an apparent energy density or net energy production higher than they could explain with chemistry. They also saw weak signals associated with fusion, specifically, they believed they had seen evidence of neutrons, they detected tritium, and also helium. They did not have quantitative correlations, and  the quantities found of tritum and neutrons and the ratio of heat to tritium and neutrons, and tritium to neutrons, was far different from that expected if they had succeeded in creating normal fusion.

So what they had found, if it was nuclear in nature, was not “d-d fusion,” almost certainly, which is very well known, and which is believed to necessarily produce those products.

I just came across some remarkable language from 1990 that shows the issue. This is in a report to ICCF-1, by Iyangar and Srinivasan, from BARC, the Bhabha Atomic Research Centre, Bombay, India. These were nuclear experts, and there was, for a time, a massive effort to investigate cold fusion.

Wait, to investigate “cold fusion”? What’s that? Getting little details like exactly what one is investigating and why can be, ah, let’s call it useful.

From the abstract, and, remember, I have the benefit of an intervening three decades of history, a huge dollop of hindsight. What I’m seeing here as a misunderstanding that fostered confusion and conflict was something that many, many thought, it was language in common use. From the abstract:

A wide variety of experiments have been carried out by twelve independent teams employing both electrolytic and gas phase loading of deuterium in Pd and Ti metals to investigate the phenomenon of cold fusion first reported by Fleischmann and Pons in March 1989. The experiments were primarily devoted to the study of the emission of nuclear particles such as neutrons and tritium with a view to verify the“nuclear origin”of cold fusion.

Did Fleischmann and Pons report “cold fusion”? It was quite unfortunate that they mentioned the classical fusion reactions in their first paper, because it was totally obvious that what they were seeing, whatever it was, was not those reactions. The evidence that a nuclear reaction was happening was circumstantial, not enough to overcome strong expectation that such reactions would be impossible in the conditions of their experiments

That is, there was heat that they could not explain. If the heat were regular and predictable and reproducible, that could have been enough. But it wasn’t. The heat effect was elusive. “I can’t explain these results with chemistry” is not evidence with which one could convince a physicist. One would first need to convince the physicist that the evidence is clear and not artifact, because if one has telegraphed that you think this is something the physicist will think is impossible, they will examine all the evidence with a jaundiced eye. It’s just human nature.

So “cold fusion” started off with a handicap. It really didn’t help that the neutron evidence that Pons and Fleischmann adduced was artifact. What we know now is that very few neutrons, if any, are generated with their experiment.

(We need to realize that many difference kinds of experiments get lumped together as “cold fusion,” but different experiments may actually show different results, different reactions might be happening under conditions that are sometimes not adequately controlled. By conceptualizing the object of study as “cold fusion,” an assumption is created of a single phenomenon, and then when results differ, the reality of the alleged phenomenon comes into question.l)

What was reasonably being investigated was the possibility of nuclear phenomena in certain metals loaded with deuterium. The first issue to investigate was, for most groups, heat. But groups with a particular interest in nuclear physics often investigated neutrons, and when it was found that many replication attempts produced very few neutrons, this strengthened skepticism. There was also a common assumption that if nuclear reactions were happening, there must be neutrons. That is simply false, but the absence of neutrons from what was being assumed to be deuterium-deuterium fusion, that’s actually a very dificult puzzle.

The first order of business was to detect, measure, and correlate phenomena, not to interpret the results, but this was all pre-interpreted. They were investigating “cold fusion.” Not, say, “the Fleischman and Pons reports of anomalous heat.”

Ask a physicist, could there be deuterium fusion in palladium deuteride at room temperature, and he or she is likely to tell you, straight out, “No.” But ask this scientist if there could be a heat effect of unknown origin, and if they are worth their salt, they would tell you, well, we don’t know everything and sometimes it can take time to figure out what is happening.

Tbe report desperately needing confirmation was what Pons and Fleischmann had actually observed, once the confusion over their neutron reports was cleared up. “Cold fusion” was an interpretation, not an experimental fact, or certainly not yet.

Tritium was widely observed, it wasn’t just BARC. But was the tritium connected with the prime Fleischmann=Pons effect, the heat? And then things really got crazy when reports started to show up of a heat effect with light hydrogen. Again, the concept of a single phenomenon caused confusion. It is not that we know there is more than one reaction, we don’t know that yet. But it is quite possible, the “law of conservation of miracles” is not a law, and cold fusion is not a miracle. It’s something that doesn’t happen very often, and while I use the tern “cold fusion,” often, I would not use it academically without clear definition. At least I hope not!

By “cold fusion” i mean the FP Heat Effect and other possible affects commonly associated with it or believed or claimed to be related. I justify the use of the term because the known product from the FP Heat Effect is helium, which is, Ockham’s Razor with the evidence we have, coming from the conversion oi deuterium to helium. That is fusion in effect, which must be distinguished from “deuterium fusion,” i.e., two deuterium nuclei fusing. Why? That reaction is very well known and the products are well known, and there are reasons to consider that even if this happens somehow at low energy, the products will be the same.

(When a physicist claims that “cold fusion” is impossible, because of the Coulomb barrier making the fusion rate be so low as to be indetectable, they are being sloppy, because muon-catalyzed fusion takes place at extremely low temperatures. Muons act as catalysts, so the immediate question arises, could something else catalyze fusion. An inability to imagine it is, again, not evidence. The universe is vast and possibilities endless, we cannot know all of them, only what is common.)

In 22 different electrolytic experiments whose cathode surface areas ranged from 0.1 to 300 cm2 , large bursts of neutrons and/or tritium were measured. Some of these gave clear evidence that these two nuclear particles were being generated simultaneously. The neutron-to-tritium yield ratios in the majority of these experiments was in the range of 10-6 to 10-9.

“Large bursts” is suspicious. Large compared to what? I have not read the report in detail yet. (I will). But tritium is a minor effect associated with the FP Heat Effect. It may be the case that tritium is enhanced if there is substantial light hydrogen in the heavy water, but even a little light water tends to suppress the FP Heat Effect. Even if there is some single mechanism, it behaves differently when presented with different fuels. The norm with cold fusion experiments, though, is that high-energy radiation and radioactive products are found only at very low levels. The rule of thumb, I state as tritium being a million times down from helium, and neutrons a million times down from helium. Helium production, with deuterium fuel (helium is not reported with light hydrogen as fuel, and we don’t know the product of light hydrogen “cold fusion.”

Those ratios are strong evidence that “cold fusion” is not d-d fusion, because the operation of d-d fusion, how and why the nucleus normally fragments, is well understood. I.e, the fused nucleus, the product of that fusion, is highly energized, it’s hot. That is true even if the reaction is not hot fusion (and the kinetic energy involved with fusion from the velocity of impact is dwarfed by the energy of collapse, as the nucleons collapse under the influence of the strong force. (Very strong force!)  There is so much energy that normally the nucleus breaks into two pieces and there are only two ways it can do that. It can eject a proton or it can eject a neutron, to carry away that energy and leave the nucleus in the ground state, cool. That’s the two branches, and it is mostly equal which nucleon ends up being odd man out. Hence the two common branches,

1H2 (deuterium)+ 1H2 -> 1H3 (Helium-3)+ 1H(light hydrogen, a proton) + energy

1H2 + 1H2 -> 2He3 (Helium-4) + 0N 1 (a neutron) + energy

And then the third branch is very rare. If the nucleus happens to be exactly balanced (I think, maybe balance is not an issue, just the odds), and manages to live intact long enough to generate a photon, the nucleons can stay together and almost all the energy is dumped into the photon, which is very high energy, 23.8 MeV. (The rest of the energy is in the recoil of the helium nucleus.) I think the branching ratio for that is one in 10^-7 reactions. One in ten million.

So that becomes another miracle that exercised Huizenga. If somehow the fusion happens (spectacularly unlikely!), and somehow it manages to produce helium (very unlikely), there must be a gamma ray, a very energetic one. This would be, at the heat levels reported, very dangerous. It’s not observed. That’s strong evidence that d+d fusion is no happening.

Something else is happening. In that context and with that understanding, and given the mishegas about “cold fusion” it was important to be investigating phenomena, not explanations. Tritium was actually contradictory to the FP Heat Effect, in general. It was lumped together with it because if tritium was being produced, “something nuclear” was happening. But what is the evidence that the heat was nuclear. Maybe if we look carefully, we will see nuclear reactions happening at low levels in unexpected places.

A unique feature of the BARC electrolysis results is that the first bursts of neutrons and tritium occurred (in 8 out of 11 cells) on the very first day of commencement of electrolysis, when hardly a few amp-hrs of charge had been passed.

This is evidence that the effects they are seeing are not the FP Heat Effect! It doesn’t happen that early, in FP type electrolysis experiments. There are rapid effects reported with codeposition, a different approach.

But the occasion for this post was the linguistic anomaly here. I’ll repeat it:

The experiments were primarily devoted to the study of the emission of nuclear particles such as neutrons and tritium with a view to verify the“nuclear origin”of cold fusion.

“Fusion” is a nuclear reaction. So they are looking to verify the nuclear origin of a nuclear reaction. It’s a tautology. As to looking for nuclear particles associated with what was called “cold fusion,” the FP Heat Effect, they are missing, mostly. What BARC found was at very low levels. Helium was suspected early on, but (because of no gammas) was not given a great deal of credence, and there was an additional reason to doubt helium evidence: helium is present in the atmosphere at levels normally greater than those expected if the FP Heat Effect were producing helium. So in many experiments (not all), leakage can be a possible artifact. It took careful work (beginning with Miles as to what I know so far) to actually show that helium is the main product of the FP Heat Effect.

That has been done, and confirmed many times. Tritium, however, is interesting, scientifically, and there is much work still to be done with tritium, and in particular, investigating tritium correlations with other products and conditions.

 

Fantasy rejects itself

I came across this review when linking to Undead Science on Amazon. It’s old, but there is no other review. I did buy that book, in 2009, from Amazon, used, but never reviewed it and now Amazon wants me to spend at least $50 in the last year to be able to review books….

But I can comment on the review, and I will. I first comment here.


JohnVidale

August 7, 2011

Format: Hardcover|Verified Purchase

I picked up this book on the recommendation of a fellow scientist with good taste in work on the history of science. I’ll update this, should I get further through the book, but halfway through this book is greatly irritating.

The book is a pretty straightforward story by a sociologist of science, something Dr. Vidale is not (he is a professor of seismology). There are many myths, common tropes, about cold fusion, and, since Dr. Vidale likes Gary Taubes (as do I, by the way), perhaps he should learn about information cascades; Taubes has written much about them. He can google “Gary Taubes information cascade.”

An information cascade is a social phenomenon where something comes to be commonly believed without ever having been clearly proven. It happens with scientists as well as with anyone.

The beginning is largely an explanation of how science works theoretically.

It is not. Sociologists of science study how science actually works, not the theory.

The thesis seems to be that science traditionally is thought of as either alive or dead, depending on whether the issues investigated are uncertain or already decided.

Is that a “thesis” or an observation? It becomes very clear in this review that the author thinks “cold fusion” is dead. As with many such opinions, it’s quote likely he has no idea what he is talking about. What is “cold fusion”?

It was a popular name given to an anomalous heat effect, based on ideas of the source, but the scientists who discovered the effect, because they could not explain the heat with chemistry — and they were experts chemists, leaders in their field — called it an “unknown nuclear reaction.” They had not been looking for a source of energy. They were actually testing the Born-Oppenheimer approximation, and though that the approximation was probably good enough that they would find nothing. And then their experiment melted down.

A third category of “undead” is proposed, in which some scientists think the topic is alive and others think it is dead, and this category has a life of its own. Later, this theme evolves to argue the undead topic of cold fusion still alive, or was long after declared dead.

That is, more or less the basis for the book. The field is now known by the more neutral term of “Condensed Matter Nuclear Science,” sometimes “Low Energy Nuclear Reactions,” the heat effect is simply called the Anomalous Heat Effect by some. I still use “cold fusion” because the evidence has become overwhelming that the nuclear reaction, whatever it is, is producing helium from deuterium, which is fusion in effect if not in mechanism. The mechanism is still unknown. It is obviously not what was thought of as “fusion” when the AHE was discovered.

The beginning and the last chapter may be of interest to those who seek to categorize varieties in the study of the history of science, but such pigeonholing is of much less value to me than revealing case studies of work well done and poorly done.

That’s Gary Taubes’ professional theme. However, it also can be superficial. There is a fine study by Henry H. Bauer (2002). ‘Pathological Science’ is not Scientific Misconduct (nor is it pathological).

One argument I’m not buying so far is the claim that what killed cold fusion is the consensus among most scientists that it was nonsense, rather than the fact that cold fusion is nonsense.

If not “consensus among most scientists,” how then would it be determined that a field is outside the mainstream? And is “nonsense” a “fact”? Can you weigh it?

There is a large body of experimental evidence, and then there are conclusions drawn from the evidence, and ideas about the evidence and the conclusions. Where does observed fact become “nonsense”?

“Nonsense” is something we say when what is being stated makes no sense to us. It’s highly subjective.

Notice that the author appears to believe that “cold fusion” is “nonsense,” but shows no sign of knowing what this thing is, what exactly is reported and claimed.

No, the author seems to be believe “cold fusion is nonsense,” as a fact of nature, as a reality, not merely a personal reaction. 

More to the point, where and when was the decision made that “cold fusion is dead”? The U.S. Department of Energy held two reviews of the field. The first was in 1989, rushed, and concluded before replications began appearing. Another review was held in 2004. Did these reviews declare that cold fusion was dead?

No. In fact, both recommended further research. One does not recommend further research for a dead field. In 2004, that recommendation was unanimous for an 18-member panel of experts.

This is to me a case study in which many open-minded people looked at a claim and shredded it.

According to Dr. Vidale. Yes, there was very strong criticism, even “vituperation,” in the words of one skeptic. However, the field is very much alive, and publication in mainstream journals has continued (increasing after a nadir in about 2005). Research is being funded. Governmental interest never disappeared, but it is a very difficult field.

There is little difference here between the truth and the scientists consensus about the truth.

What consensus, I must ask? The closest we have to a formal consensus would be the 2004 review, and what it concluded is far from the position Mr. Vidale is asserting. He imagines his view is “mainstream,” but that is simply the effect of an information cascade. Yes, many scientists think as he thinks, still. In other words, scientists can be ignorant of what is happening outside their own fields. But it is not a “consensus,” and never was. It was merely a widespread and very strong opinion, but that opinion was rejecting an idea about the Heat Effect, not the effect itself.

To the extent, though, that they were rejecting experimental evidence, they were engaged in cargo cult science, or scientism, a belief system. Not the scientific method.

The sociological understructure in the book seems to impede rather than aid understanding.

It seems that way to Dr. Vidale because he’s clueless about the reality of cold fusion research.

Specifically, there seems an underlying assumption that claims of excess heat without by-products of fusion reactions are a plausible interpretation, whose investigations deserved funding, but were denied by the closed club of established scientists.

There was a claim of anomalous heat, yes. It was an error for Pons and Fleischmann to claim that it was a nuclear reaction, and to mention “fusion,” based on the evidence they had, which was only circumstantial.

The reaction is definitely not what comes to mind when that word is used.

But . . . a fusion product, helium, was eventually identified (Miles, 1991), correlated with heat, and that has been confirmed by over a dozen research groups, and confirmation and measurement of the ratio with increased precision is under way at Texas Tech, very well funded, as that deserves. Extant measurements of the heat/helium ratio are within experimental error of the deuterium fusion to helium theoretical value.

(That does not show that the reaction is “d-d fusion,” because any reaction that starts with deuterium and ends with helium, no matter how this is catalyzed, must show that ratio.)

That Dr. Vidale believes that no nuclear product was identified simply shows that he’s reacting to what amounts to gossip or rumor or information cascade. (Other products have been found, there is strong evidence for tritium, but the levels are very low and it is the helium that accounts for the heat).

The author repeatedly cites international experts calling such scenarios impossible or highly implausible to suggest that the experts are libeling cold fusion claims with the label pathological science. I side with the experts rather than the author.

It is obvious that there were experts who did that; this is undeniable. Simon does not suggest “libel.” And Vidale merely joins in the labelling, without being specific such that one could test his claims. He’s outside of science. He’s taking sides, which sociologists generally don’t do, nor, in fact, do careful scientists do it within their field. To claim that a scientist is practicing “pathological science” is a deep insult. That is not a scientific category. Langmuir coined the term, and gave characteristics, which only superficially match cold fusion, which long ago moved outside of that box.

Also, the claim is made that this case demonstrates that sociologists are better equipped to mediate disputes involving claims of pathological science than scientists, which is ludicrous.

It would be, if the book claimed that, but it doesn’t. More to the point, who mediates such disputes? What happens in the real world?

Clearly, in the cold fusion case, another decade after the publication of this book has not contradicted any of the condemnations from scientists of cold fusion.

The 2004 U.S. DoE review was after the publication of the book, and it contradicts the position Dr. Vidale is taking, very clearly. While that review erred in many ways (the review was far too superficial, hurried, and the process allowed misunderstandings to arise, some reviewers clearly misread the presented documents), they did not call cold fusion “nonsense.” Several reviewers probably thought that, but they all agreed with “more research.”

Essentially, if one wishes to critically assess the stages through which cold fusion ideas were discarded, it is helpful to understand the nuclear processes involved.

Actually, no. “Cold fusion” appears to be a nuclear physics topic, because of “fusion.” However, it is actually a set of results in chemistry. What an expert in normal nuclear processes knows will not help with cold fusion. It is, at this point, an “unknown nuclear reaction” (which was claimed in the original paper). (Or it is a set of such reactions.) Yes, if someone wants to propose a theory of mechanism, a knowledge of nuclear physics is necessary, and there are physicists, with such understanding, experts, doing just that. So far, no theory has been successful to the point of being widely accepted.

One should not argue, as the author indirectly does, for large federal investments in blue sky reinvention of physics unless one has an imposing reputation of knowing the limitations of existing physics.

Simon does not argue for that. I don’t argue for that. I suggest exactly what both U.S. DoE reviews suggested: modest funding for basic research under existing programs. That is a genuine scientific consensus! However, it is not necessary a “consensus of scientists,” that is, some majority showing in a poll, as distinct from genuine scientific process as functions with peer review and the like.

It appears that Dr. Vidale has an active imagination, and thinks that Simon is a “believer” and thinks that “believers” want massive federal funding, so he reads that into the book. No, the book is about a sociological phenomenon, it was Simon’s doctoral thesis originally, and sociologists of science will continue to study the cold fusion affair, for a very long time. Huizenga called it the “scientific fiasco of the twentieth century.” He was right. It was a perfect storm, in many ways, and there is much that can be learned from it.

Cold fusion is not a “reinvention of physics.” It tells us very little about nuclear physics. “Cold fusion,” as a name for an anomalous heat effect, does not contradict existing physics. It is possible that when the mechanism is elucidated, it will show some contradiction, but what is most likely is that all that has been contradicted was assumption about what’s possible in condensed matter, not actual physics.

There are theories being worked on that use standard quantum field theory, merely in certain unanticipated circumstances. Quick example: what will happen if two deuterium molecules are trapped in relationship at low relative momentum, such that the nuclei form the vertices of a tetrahedron? The analysis has been done by Akito Takahashi: they will collapse into a Bose -Einstein condensate within a femtosecond or so, and that will fuse by tunneling within another femotosecond or so, creating 8Be, which can fission into two 4He nuclei, without gamma radiation (as would be expected if two deuterons could somehow fuse to helium without immediately fissioning into the normal d-d fusion products).

That theory is incomplete, I won’t go into details, but it merely shows how there may be surprises lurking in places we never looked before.

I will amend my review if my attention span is long enough, but the collection of objectionable claims has risen too high to warrant spending another few hours finishing this book. Gary Taubes’ book on the same subject, Bad Science, was much more factual and enlightening.

Taubes’ Bad Science is an excellent book on the history of cold fusion, the very early days only. The story of the book is well known, he was in a hurry to finish it so he could be paid. As is common with his work, he spent far more time than made sense economically for him. He believed he understood the physics, and sometimes wrote from that perspective, but, in fact, nobody understands what Pons and Fleischmann found. They certainly didn’t.

Gradually, fact is being established, and how to create reliable experiments is being developed. It’s still difficult, but measuring the heat/helium ratio is a reliable and replicable experiment. It’s still not easy, but what is cool about it is that, per existing results, if one doesn’t see heat, one doesn’t see helium, period, and if one does see heat (which with a good protocol might be half the time), one sees proportionate helium.

So Dr. Vidale gave the book a poor review, two stars out of five, based on his rejection of what he imagined the book was saying.


There were some comments, that can be seen by following the Unreal arguments link.

postoak6 years ago
“Clearly, in the cold fusion case, another decade after the publication of this book has not contradicted any of the condemnations from scientists of cold fusion.” I think this statement is false. Although fusion may not be occurring, there is much, much evidence that some sort of nuclear event is taking place in these experiments. See http://www.youtube.com/watch?v=VymhJCcNBBc
The video was presented by Frank Gordon, of SPAWAR. It is about nuclear effects, including heat.
JohnVidale  6 years ago In reply to an earlier post
More telling than the personal opinion of either of us is the fact that 3 MORE years have passed since the video you linked, and no public demonstration of energy from cold fusion has YET been presented.
How does Dr. Vidale know that? The video covers many demonstrations of LENR. What Dr. Vidale may be talking about is practical levels of energy, and he assumes that if such a demonstration existed, he’d have heard about it. There have been many demonstrations. Dr.  Vidale’s comments were from August 2011. Earlier that year, there was a major claim of commercial levels of power, kilowatts, with public “demonstrations.” Unfortunately, it was fraud, but my point here is that this was widely known, widely considered, and Dr. Vidale doesn’t seem to know about it at all.
(The state of the art is quite low-power, but visible levels of power have been demonstrated and confirmed.)
Dr. Vidale is all personal opinion and no facts. He simply ignored the video, which is quite good, being a presentation by the SPAWAR group (U.S. Navy Research Laboratory, San Diego) to a conference organized by Dr. Robert Duncan, who was Vice Chancellor for Research at the University of Missouri, and then countered the comment with simple ignorance (that there has been no public demonstration). 
Taser_This 2 years ago (Edited)
The commenters note is an excellent example of the sociological phenomenon related to the field of Cold Fusion, that shall be studied along with the physical phenomenon, once a change of perception of the field occurs. We shall eventually, and possibly soon, see a resolution of the clash of claims of pathological science vs. pathological disbelief. If history is any indicator related to denial in the face of incontrovertible evidence (in this case the observation of excess heat, regardless of the process of origin since we know it is beyond chemical energies) we shall be hearing a lot more about this topic.

Agreed, Dr. Vidale has demonstrated what an information cascade looks like. He’s totally confident that he is standing for the mainstream opinion. Yet “mainstream opinion” is not a judgment of experts, except, of course, in part.

Dr. Vidale is not an expert in this field, and he is not actually aware of expert reviews of “cold fusion.” Perhaps he might consider reading this peer-reviewed review of the field, published the year before he wrote, in Naturwissenschaften, which was, at the time, a venerable multidisciplinary journal,  and it had tough peer review. Edmund Storms, Status of cold fusion (2010). (preprint).

There are many, many reviews of cold fusion in mainstream journals, published in the last  15 years. The extreme skepticism, which Vidale thinks is mainstream, has disappeared in the journals. What is undead here is extreme skepticism on this topic, which hasn’t noticed it died.

So, is cold fusion Undead, or is it simply Alive and never died?


After writing this, I found that Dr. John Vidale was a double major as an undergraduate, in physics and geology, has a PhD from Cal Tech (1986), and his major focus appears to be seismology.

He might be amused by this story from the late Nate Hoffman, who wrote a book for the American Nuclear Society, supported by the Electric Power Research Institute, A Dialogue on Chemically Induced Nuclear Effects: A Guide for the Perplexed About Cold Fusion (1995). Among other things, it accurately reviews Taubes and Huizenga. The book is written as a dialogue between a Young Scientist (YS), who represents common thinking, particularly among physicists, and Old Metallurgist (OM), which would be Hoffman himself, who is commonly considered a skeptic by promoters of cold fusion. Actually, to me, he looks normally skeptical, skepticism being essential to science.

YS: I guess the real question has to be this: Is the heat real?

OM: The simple facts are as follows. Scientists experienced in the area of calorimetric measurements are performing these experiments. Long periods occur with no heat production, then, occasionally, periods suddenly occur with apparent heat production. These scientists become irate when so-called experts call them charlatans. The occasions when apparent heat occurs seem to be highly sensitive to the surface conditions of the palladium and are not reproducible at will.

YS: Any phenomenon that is not reproducible at will is most likely not real.

OM: People in the San Fernando Valley, Japanese, Columbians, et al, will be glad to hear that earthquakes are not real.

YS: Ouch. I deserved that. My comment was stupid.

OM: A large number of of people who should know better have parroted that inane statement. There are, however, many artifacts that can indicate a false period of heat production. The question of whether heat is being produced is still open, though any such heat is not from deuterium atoms fusing with deuterium atoms to produce equal amounts of 3He + neutron and triton + proton. If the heat is real, it must be from a different nuclear reaction or some totally unknown non-nuclear source of reactions with energies far above the electron-volt levels of chemical reactions.

As with Taubes, Hoffman may have been under some pressure to complete the book. Miles, in 1991, was the first to report, in a conference paper, that helium was being produced, correlated with helium, and this was noticed by Huizenga in the second edition of his book (1993). Hoffman covers some of Miles’ work, and some helium measurements, but does not report the crucial correlation, though this was published in Journal of Electroanalytical Chemistry in 1993.

I cover heat/helium, as a quantitatively reproducible and widely-confirmed experiment, in my 2015 paper, published in a special section on Low Energy Nuclear Reactions in Current Science..

Of special note in that section would be McKubre, Cold fusion: comments on the state of scientific proof.

McKubre is an electrochemist who, when he saw the Pons and Fleischmann announcement, already was familiar with the palladium-deuterium system, working at SRI International, and immediately recognized that the effect reported must be in relatively unexplored territory, with very high loading ratio. This was not widely understood, and replication efforts that failed to reach a loading threshold, somewhere around 90% atom (D/Pd), reported no results (neither anomalous heat, nor any other nuclear effects). At that time, it was commonly considered that 70% loading was a maximum.

SRI and McKubre were retained by the Electric Power Research Institute, for obvious reasons, to investigate cold fusion, and until retiring recently, he spent his entire career after that, mostly on LENR research.

One of the characteristics of the rejection cascade was cross-disciplinary disrespect. In his review, Dr. Vidale shows no respect or understanding of sociology and “science studies,” and mistakes  his own opinions and those of his friends as “scientific consensus.”

What is scientific consensus? This is a question that sociologists and philosophers of science study. As well, most physicists knew little to nothing about electrochemistry, and there are many stories of Stupid Mistakes, such as reversing the cathode and anode (because of a differing convention) and failing to maintain very high cleanliness of experiments. One electrochemist, visiting such a lab, asked, “And then did you pee in the cell?” The most basic mistake was failing to run the experiment long enough to develop the conditions that create the effect. McKubre covers that in the paper cited.

(An electrolytic cathode will collect cations from the electrolyte, and cathodes may become loaded with fuzzy junk. I fully sympathize with physicists with a distaste for the horrible mess of an electrolytic cathode. For very good reasons, they prefer the simple environment of a plasma, which they can analyze using two-body quantum mechanics.

I sat in Feynman’s lectures at Cal Tech, 1961-63, and, besides his anecdotes that I heard directly from him when he visited Page House, I remember one statement about physics: “We don’t have the math to calculate the solid state, it is far too complex.” Yet too many physicists believed that the approximations they used were reality. No, they were useful approximations, that usually worked. So did Ptolemaic astronomy.)

Dr. Vidale is welcome to comment here and to correct errors, as may anyone.

 

Update, December 19, 2018

Apparently I sent Vidale an email notifying him of this post, I normally do that as a courtesy with reviews.  I could not find the email, which is a bit puzzling. It was likely very brief with a link, as he stated. I recall no response, but this showed up, a screenshot posted by a troll on Encyclopedia Dramatica (a satire site):

As before, no response is required. The troll who posted that image is also the troll who, with his brother, created and maintained the RationalWiki article, and Vidale’s comment is being used as a proof that I’m a troll. Circular.

Of course, Vidale did, in fact,  respond, just not in situ and not where it would be likely to be seen by me. Some people have a weird idea of what “no response” means.

I could not find the post, my guess is that it was taken down. Vidale followed and believed the claims of twin brothers who are the most disruptive trolls I have ever seen, though, to be sure, the internet is vast and I haven’t seen everything!

Russ George and the D2Fusion team

Laura Chao, 24. Nuclear researcher at D2Fusion, a Foster City company working on generating clean, renewable energy from solid-state fusion.

This page (October 1, 2006) was linked from the defunct D2Fusion web site.

Russ George has been popping up in LENR circles again, so I decided to check out the history (which I knew mostly as rumor from people he had formerly worked with, in circles where he had apparently become persona non grata), and I found the image above, which I put here as eye candy. Nice, eh? I hope her experience with cold fusion was not a total bust and that her life has been productive and worthwhile. I don’t see that she has been mentioned anywhere else on this topic. Great photo, though!

Some comments from the article on Chao:

75912  Posted 10.25.06

“Too bad Chao didn’t read the expose on D2Fusion in the May, 2006 New Energy Times. “

75913 Posted 12.19.06

“Too bad ‘75912’ was taken in by the New Energy Times attack on d2fusion.”

Laura later blogged about cold fusion (March, 2007) and about the fun she was having at work. And more.

And even more, an embarrassment of riches. “My professional life is not progressing as planned.”

She is a fantastic blogger. Her response to an actual question about cold fusion is priceless. And then:

Lies Lies Lies (September 1, 2007) (my emphasis added)

“Your CEO says that your lab is melting,” JB whispered into my ear.

For the purpose of the 7×7 Hot 20 Under 40 party, my company had printed me brand new business cards that read “Nuclear Physicist,” despite the fact that my official title was actually ‘science technician.’

In light of my situation, I decided to enlist support. Showing up with my friend JB, the CTO of Tesla Motors (who used to be a fusion researcher himself), would help me obtain the outrageous amount of publicity my company was expecting me to generate, and also satisfy the magazine, which had advertised me as the up and coming genius of the year. (Geez, no pressure.) My CEO, unfortunately, failed to inquire into JB’s past before lecturing him about our runaway success in cold fusion.

“Apparently, the fusion is so out of control,” JB said, barely able to hold back his laughter as he repeated my CEO’s claims, “that your laboratory instruments keep vaporizing. HAHAHAHAHAHA!”

I should have known right then that eventually (read: very soon) the company would no longer be a company.

The job has evaporated by December, 2007. (Laura Chao had a bachelor’s degree in mechanical engineering.) I assume the CEO was George.

January 10, 2008, the link to her as a “D2F scientist” was still up. The D2Fusion.com site went “down for maintenance” February 10, and stayed that way, until it vanished after July 8, 2008. In 2012, Godaddy put the domain up for sale.  It’s now a strange spam-y site.

Laura Chao’s last blog post was in March, 2013. Brilliant, actually.

So … the New Energy Times “expose.”  Steve Krivit is a yellow journalist, it’s his shtick.  He’s also done a lot of work, and what he has written about Russ George appears to be well-supported.

So Russ George on LENR Forum. His own thread. 

Here is the very RAW geiger data one can see some excursions well above the long duration ‘background’ counts. Given the relative insensitivity of Geigers to gamma (or x-ray) photons the Androcles deuterated fuel mixture is doing something quite extraordinary as there is only a fraction of a gram of fuel mix, about the volume of 5-10 grains of rice. https://www.lenr-forum.com/attachment/5106-andro-may7-pdf/

What is immediately noticeable is that the “excursions” are occurring at 24-hour intervals. No evidence is presented connecting the counts with the fuel mix. The LF user who questions what had been done is banned on LF, by Alan Smith, who is sponsoring George’s current research. George reveals his thinking about Andrea Rossi:

seven_of_twenty wrote:

RussGeorge

Is the above cryptic statement intended to mean that you still think Rossi has demonstrated LENR? If so, why on Earth would you think it, given all the evidence to the contrary over the past 7+ years?

No number of blowhard armchair trolls is worth one iota of real data, so what is your point. Rossi has shown plenty of interesting data that speaks to those skilled in the art.

The art of the con, indeed. It takes one to know one.

Russ George took research possibilities and turned them into personal promotion, he was more blatant in this than Rossi. Both managed, for a time, to impress, in some way or other, real scientists.

There are real investors looking for opportunities to support cold fusion, and they tested Rossi’s claims, and his devices, to the hilt, and found nothing but lies, damn lies, and no statistics.

One  LF user (Dewey Weaver) actually represents them (though not officially on that forum). These people have invested on the order of $70 million in LENR over the last few years, they literally put their money where their mouth is. They don’t talk much, in fact.

Russ George is a big talker, talking big, always sure of himself. And then there is Alan Smith.

Protecting the fringe allows the mainstream to breathe

Wikipedia is famously biased against fringe points of view or fringe science (and actually the bias can appear with any position considered “truth” by a majority or plurality faction). The pseudoskeptical faction there claims that there is no bias, but it’s quite clear that reliable sources exist, per Wikipedia definitions, that are excluded, and weaker sources “debunking” the fringe are allowed, plus if editors appears to be “fringe,” they are readily harassed and blocked or banned, whereas more egregious behavior, violating Wikipedia policies, is overlooked, if an editor is allied with the “skeptical” faction. Over time, the original Wikipedians, who actually supported Neutral Point of View policy, have substantially been marginalized and ignored, and the faction has become increasingly bold.

When I first confronted factional editing, before the Arbitration Committee in 2009, the faction was relatively weak. However, over the ensuing years, the debunkers organized, Guerrilla Skeptics on Wikipedia (GSoW) came into existence, and operates openly. People who come to Wikipedia to attempt to push toward neutrality (or toward “believer” positions) are sanctioned for treating Wikipedia as a battleground, but that is exactly what the skeptics have done, and the Guerrilla Skeptics (consider the name!) create a consistent push with a factional position.

There is increasing evidence of additional off-wiki coordination. It would actually be surprising if it did not exist, it can be difficult to detect. But we have an incident, now.

February 24, 2018 I was banned by the WikiMediaFoundation. There was no warning, and no explanation, and there is no appeal from a global ban. Why? To my knowledge, I did not violate the Terms of Service in any way. There was, however, at least one claim that I did, an allegation by a user that I had “harassed” him by email, the first of our emails was sent through the WMF servers, so if, in fact, that email was harassment, it would be a TOS violation, though a single violation, unless truly egregious, has never been known to result in a ban. I have published all the emails with that user here.

This much is known, however. One of those who claimed to have complained about me to the WMF posted a list of those complaining on the forum, Wikipedia Sucks. It is practically identical to the list I had inferred; it is, then, a convenient list of those who likely libelled me. However, I will be, ah, requesting the information from the WikiMedia Foundation.

Meanwhile, the purpose of this post is to consider the situation with fringe science and an encyclopedia project. First of all, what is fringe science?

The Wikipedia article, no surprise, is massively confused on this.

Description

The term “fringe science” denotes unorthodox scientific theories and models. Persons who create fringe science may have employed the scientific method in their work, but their results are not accepted by the mainstream scientific community. Fringe science may be advocated by a scientist who has some recognition within the larger scientific community, but this is not always the case. Usually the evidence provided by fringe science is accepted only by a minority and is rejected by most experts.[citation needed]

Indeed, citation needed! Evidence is evidence, and is often confused with conclusions. Rejection of evidence is essentially a claim of fraud or reporting error, which is rare for professional scientists, because it can be career suicide. Rather, a scientist may discover an anomaly, au unexplained phenomenon, more precisely, unexplained results. Then a cause may be hypothesized. If this hypothesis is unexpected within existing scientific knowledge, yet the hypothesis is not yet confirmed independently, it may be “rejected” as premature or even wrong. If there are experts in the relevant field who accept it as possible and worthy of investigation, this then is “possible new science.” There may be experts who reject the new analysis, for various reasons, and we will look at a well-known example, “continental drift.”

There is no “journal of mainstream opinion,” but there are journals considered “mainstream.” The term “mainstream” is casually used by many authors without any clear definition. In my own work, I defined “mainstream journals” as journals acceptable as such by Dieter Britz, a skeptical electrochemist. As well, the issue of speciality arises. If there is an electrochemical anomaly discovered, heat the expert chemists cannot explain through chemistry, what is the relevant field of expertise. Often those who claim a field is “fringe” are referring to the opinions of those who are not expert in the directly relevant field, but whose expertise, perhaps, leads to conclusions that are, on the face, contradicted by evidence gathered with expertise other than in their field.

With “cold fusion,” named after a hypothesized source for anomalous heat,  in the Fleischmann-Pons Heat Effect,  (also found by many others), it was immediately assumed that the relevant field would be nuclear physics. It was also assumed that if “cold fusion” were real, it would overturn established physical theory. That was a blatant analytical error, because it assumed a specific model of the heat source, a specific mechanism, which was actually contradicted by the experimental evidence, most notably by the “dead graduate student effect.” If the FPHE were caused by the direct fusion of two deuterons to form helium, the third of Huizenga’s three “miracles,” if absent, would have generated fatal levels of gamma radiation. The second miracle was the reaction being guided in to the very rare helium branch, instead of there being fatal levels of neutron radiation, and the first would be the fusion itself. However, that first miracle would not contradict existing physics, because an unknown form of catalysis may exist, and one is already known, muon-catalyzed fusion.

Evidence is not provided by “fringe science.” It is provided by ordinary scientific study. In cargo cult science, ordinary thinking is worshipped as if conclusive, without the rigorous application of the scientific method. Real science is always open, no matter how well-established a theory. The existing theory may be incomplete. Ptolemaic astronomy provided a modal that was quite good at explaining the motions of planets. Ptolemaic astronomy passed into history when a simpler model was found.

Galileo’s observations were rejected because they contradicted certain beliefs.  The observations were evidence, and “contradiction” is an interpretation, not evidence in itself. (It is not uncommon for  apparently contradictory evidence to be later understood as indicating an underlying reality. But with Galileo, his very observations were rejected — I think, it would be interesting to study this in detail — and if he were lying, it would be a serious moral offense, actually heresy.

The boundary between fringe science and pseudoscience is disputed. The connotation of “fringe science” is that the enterprise is rational but is unlikely to produce good results for a variety of reasons, including incomplete or contradictory evidence.[7]

The “boundary question” is an aspect of the sociology of science. “Unlikely to produce good results,” first of all, creates a bias, where results are classified as “good” or “poor” or “wrong,” all of which moves away from evidence to opinion and interpretation. “Contradictory evidence,” then, suggests anomalies. “Contradiction” does not exist in nature. With cold fusion, an example is the neutron radiation issue. Theory would predict, for two-deuteron fusion, massive neutron radiation. So that Pons and Fleischmann reported neutron radiation, but at levels far, far below what would be expected for d-d fusion generating the reported heat, first of all, contradicted the d-d fusion theory, on theoretical grounds. They were quite aware of this, hence what they actually proposed in their first paper was not “d-d fusion” but an “unknown nuclear reaction.” That was largely ignored, so much noise was being made about “fusion,” it was practically a Perfect Storm.

Further, any substantial neutron radiation would be remarkable as a result from an electrochemical experiment. As came out rather rapidly, Pons and Fleischmann had erred. Later work that established an upper limit for neutron radiation was itself defective (the FP heat effect was very difficult to set up, and it was not enough to create an alleged “FP cell” and look for neutrons, because many such cells produce no measurable heat), but it is clear from later work that neutron generation, if it exists at all, is at extremely low levels, basically irrelevant to the main effect.

Such neutron findings were considered “negative” by Britz. In fact, all experimental findings contribute to knowledge; it became a well-established characteristic of the FP Heat Effect that it does not generate significant high-energy radiation, nor has the heat ever been correlated (across multiple experiments and by multiple independent groups) with any other nuclear product except helium. 

The term may be considered pejorative. For example, Lyell D. Henry Jr. wrote that, “fringe science [is] a term also suggesting kookiness.”[8] This characterization is perhaps inspired by the eccentric behavior of many researchers of the kind known colloquially (and with considerable historical precedent) as mad scientists.[9]

The term does suggest that. The looseness of the definition allows inclusion of many different findings and claims, which do include isolated and idiosyncratic ideas of so-called “mad scientists.” This is all pop science, complicated by the fact that some scientists age and suffer from forms of dementia. However, some highly successful scientists also move into a disregard of popular opinion, which can create an impression of “kookiness,” which is, after all, popular judgment and not objective. They may be willing to consider ideas rejected for social reasons by others.

Although most fringe science is rejected, the scientific community has come to accept some portions of it.[10] One example of such is plate tectonics, an idea which had its origin in the fringe science of continental drift and was rejected for decades.[11]

There are lost and crucial details. Rejected by whom, and when? The present tense is used, and this is common with the anti-fringe faction on Wikipedia. If something was rejected by some or by many, that condition is assumed to continee and is reported in the present tense, as as it were a continuing fact, when an author cannot do more than express an opinion about the future.  Now, plate tectonics is mentioned. “Continental drift” is called “fringe science,” even after it became widely accepted.

Wegener’s proposal of continental drift is a fascinating example. The Wikipedia article does not mention “fringe science.” The Wikipedia article is quite good, it seems to me. One particular snippet is of high interest:

David Attenborough, who attended university in the second half of the 1940s, recounted an incident illustrating its lack of acceptance then: “I once asked one of my lecturers why he was not talking to us about continental drift and I was told, sneeringly, that if I could prove there was a force that could move continents, then he might think about it. The idea was moonshine, I was informed.”[47]

As late as 1953 – just five years before Carey[48] introduced the theory of plate tectonics – the theory of continental drift was rejected by the physicist Scheidegger on the following grounds.[49]

That rejection was essentially pseudoskepticism and pseudoscientific. There was observation (experimental evidence) suggesting drift. The lack of explanatory theory is not evidence of anything other than possible ignorance. “Absence of evidence is not evidence of absence.”

The fact is that the continental drift hypothesis, as an explanation for the map appearance and fossil record, was not generally accepted. What shifted opinion was the appearance of a plausible theory. Worthy of note was how strongly the opinion of “impossible” was, such that “proof” was demanded. This is a sign of a fixed mind, not open to new ideas. The history of science is a long story of developing methods to overcome prejudice like that. This is a struggle between established belief and actual fact. Experimental evidence is fact. Such and such was observed, such and such was measured. These are truth, the best we have. It can turn out that recorded data was a result of artifact, and some records are incorrect, but that is relatively rare. Scientists are trained to record data accurately and to report it neutrally. Sometimes they fail, they are human. But science has the potential to grow beyond present limitations because of this habit.

Anomalies, observations that are not understood within existing scientific models, are indications that existing models are incomplete. Rejecting new data or analyses because they don’t fit existing models is circular. Rather, a far better understanding of this is that the evidence for a new idea has not risen to a level of detail, including controlled tests, to overcome standing ideas. Science, as a whole, properly remains agnostic. Proof is for math, not the rest of science. This does not require acceptance of new ideas until one is convinced by the preponderance of evidence. Pseudoskeptics often demand “proof.” “Extraordinary claims” require extraordinary evidence.” Yes, but what does that actually mean? What if there is “ordinary evidence?” What is the definition of an “extraordinary claim,” such that ordinary evidence is to be disregarded?

It’s subjective. It means nothing other than “surprising to me” — or to “us,” often defined to exclude anyone with a contrary opinion. For Wikipedia, peer-reviewed secondary source in a clearly mainstream journal is rejected because the author is allegedly a “believer.” That is editorial opinion, clearly not neutral. Back to the fringe science article:

The confusion between science and pseudoscience, between honest scientific error and genuine scientific discovery, is not new, and it is a permanent feature of the scientific landscape …. Acceptance of new science can come slowly.[12]

This was presented by formatting as a quotation, but was not attributed in the text. This should be “According to Michael W. Friedlander.” in his book on the topic, At the Fringes of Science (1005). He is very clear: there is no clear demarcation between “science” and “fringe science.”

Friedlander does cover cold fusion, to some degree. He hedges his comments. On page 1, “… after months of independent, costly, and exhaustive checks by hundreds of scientist around the world, the excitement over cold fusion cooled off, and the claim is probably destined to take its place alongside monopoles, N-rays, polywater, and other fly-by-night “discoveries” that flash across our scientific skies to end up as part of our folklore.”

He hedged with “probably.” On what evidence was he basing that assessment?  Cold fusion was not actually his primary investigation. On pp. 27-34, he reports the early days of the cold fusion fiasco, (with some errors), and doesn’t report on what came later. He doesn’t mention the later confirmations of the heat effect, nor the discovery of a nuclear product, published in 1993 in a mainstream journal (though announced in 1991, Huizenga covered it in 1993). He does not distinguish between the”fusion theory” and the actual report of anomalous heat by experts in heat measurement, not to mention the later discovery of a correlated nuclear product. He closes that section with:

To summarize briefly, the cold fusion “discovery” will surely be remembered as a striking example of how science should not be done. Taubes has compared “many of the proponents of cold fusion” to Blaise Pascal, the seventeenth century scientist who “renounced a life of science for one of faith>” [Bad Science (1993), 92] The whole episode certainly illustrates the practical difficulty in implementing an innocuous-sounding “replication” and points to the need for full and open disclosure if there are to be meaningful tests and checks. It has also exposed some unfortunate professional sensitivities, jealousies, and resentments. At least to date, the exercise appears to be devoid of redeeming scientific value — but perhaps something may yet turn up as the few holdouts tenaciously pursue a theory as evasive as the Cheshire cat.

I agree with much of this, excepting his ignorance of results in the field, and his idea that what was to be pursued was a “theory.” No, what was needed was clear confirmation of the heat anomaly, then confirmation of the direct evidence that it was nuclear in nature (correlated helium!), and then far more intensive study of the effect itself, its conditions and other correlates and only then would a viable theory become likely.

Cold fusion was the “Scientific Fiasco of the Century” (Huizenga, 1992) It looks like Friendlander did not look at the second edition of Huizenga’s book, where he pointed to the amazing discovery of correlated helium. There was a problem in cold fusion research, that there were many “confirmations” of the heat effect, but they were not exact replications, mostly. Much of the rush to confirm — or disconfirm — was premature and focused on what was not present: “expected” nuclear products, i.e., neutrons. Tritium was confirmed but at very low levels and not correlated with heat (often the tritium studies were of cells where heat was not measured).

Nobody sane would argue that fringe claims should be “believed” without evidence, and where each individual draws the line on what level of evidence is necessary is a personal choice. It is offensive, however, when those who support a fringe claim are attacked and belittled and sometimes hounded. If fringe claims are to be rejected ipso facto, i.e., because they are considered fringe, the possibility of growth in scientific understanding is suppressed. This will be true even if most fringe claims ultimately disappear. Ordinary evidence showing some anomaly is just that, showing an anomaly. By definition, an anomaly indicates something is not understood.

With cold fusion, evidence for a heat anomaly accumulated, and because the conditions required to create the anomaly were very poorly understood, a “negative confirmation” was largely meaningless, indicating only that whatever approach was used did not generate the claimed effect, and it could have been understood that the claimed effect was not “fusion,” but anomalous heat. If the millions of dollars per month that the U.S. DoE was spending frantically in 1989 to test the claim had been understood that way, and if time had been allowed for confirmation to appear, it might not have been wasted.

As it is, Bayesian analysis of the major “negative confirmations” shows that with what became known later, those experiments could be strongly predicted to fail, they simply did not set up the conditions that became known as necessary. This was the result of a rush to judgment, pressure was put on the DoE to come up with quick answers, perhaps because the billion-dollar-per-year hot fusion effort was being, it was thought, threatened, with heavy political implications. Think of a billion dollars per year no longer being available for salaries for, say, plasma physicists.

However, though they were widely thought to have “rejected” cold fusion, the reality is that both U.S. DoE reviews were aware of the existence of evidence supporting the heat effect and its nuclear nature, and recommended further research to resolve open questions; in 2004, the 18-member panel was evenly divided on the heat question, with half considering the evidence to be conclusive and half not. Then on the issue of a nuclear origin, a third considered the evidence for a nuclear effect to be “conclusive or somewhat conclusive.”

The heat question has nothing to do with nuclear theory, but it is clear that some panel members rejected the heat evidence because of theory. The most recent major scientific work on cold fusion terms itself as a study of the Anomalous Heat Effect, and they are working on improving precision of heat and helium measurements.

If one does not accept the heat results, there would be no reason to accept nuclear evidence! So it is clear from the 2004 DoE review that cold fusion was, by then, moving into the mainstream, even though there was still rampant skepticism.

The rejection of cold fusion became an entrenched idea, an information cascade that, as is normal for such cascades, perpetuates itself, as scientists and others assume that was “everyone thinks” must be true.

In mainstream journals, publication of papers, and more significantly, reviews that accept the reality of the effect began increasing around 2005. There are no negative reviews that were more than a passing mention. What is missing is reviews in certain major journals that essentially promised to not publish on the topic, over a quarter-century ago.

One of the difficulties is that the basic research that shows, by a preponderance of the evidence, that the effect is real and nuclear in nature was all done more than a decade ago. It is old news, even though it was not widely reported. Hence my proposal, beginning quite a few years ago, was for replication of that work with increased precision, which is a classic measure of “pathological science.” Will the correlation decline or disappear with increased precision?

This is exactly the work that a genuine skeptic would want to see.

I have often written that genuine skepticism is essential to science. As well, those who will give new ideas or reported anomalies enough credence to support testing are also essential. Some of them will be accused of being “believers” or “proponents,” or even “diehards.”

The mainstream needs the fringes to be alive, in order to breathe and grow.

Diehard believers have hope, especially if they also trust reality. Diehard skeptics are simply dying.

(More accurately, “diehard skeptic” is an oxymoron. Such a person is a pseudoskeptic, a negative believer.)

Straw houses and straw men

People who live in grass houses shouldn’t stow thrones.

I think I read that story in Astounding Science Fiction when I was in high school.

The occasion for this post is a thread started by the old standard, Mary Yugo, who created a LENR Forum thread entirely based on a possible overstatement by Jed Rothwell, I’m not entirely certain yet.

Is there evidence for LENR power generation of 100W for days without input power?

He starts with:

Jed Rothwell has repeatedly asserted that there is significant and credible evidence for an LENR device which sustains a 100W output for days without any input power.

I’ve been seeing this go back and forth for days. Mary says “you said,” and Jed says “something else.” Often there is no link to the prior discussion, a particular LF peeve of mine, users who don’t use the quote facility when responding, so tracking conversations back can be tedious.

Yes, a 100 watt power release for days from LENR without input power would be remarkable. Has this ever happened? I don’t have any example in mind, setting aside the claims of Andrea Rossi, which are, to say the least, unconfirmed, hence not answers to Mary’s question. Continue reading “Straw houses and straw men”

If it blew up, it must be LENR!

I’m writing this because I like the headline. It does bring up some more, ah, fundamental issues.

THHuxleynew wrote:

kirkshanahan wrote:

The results of doing this is to come up with an excess heat signal that is a) large and b) occurring when no current is flowing, meaning you essentially have an infinite instantaneous COP. The problem is that this comes out of applying the same calibration equation used for ‘normal’ operations. The steady state is so radically different in a ‘boiled-dry’ cell that everyone should know you can’t do that. But not the CFers…it shows excess heat…it must be real…and is certainly must be nuclear!

“The CFers.” Classic Shanahan. Classic ad-hominem, straw-man argument, one of the reasons he gets no traction with those who would need to understand and respect his arguments, if he has a real basis and actually cares about supporting science.

Below, I go into details. Continue reading “If it blew up, it must be LENR!”

No payoff = bad bet?

This is an obvious logical fallacy, yet the argument is surprisingly common from some who think of themselves as skeptics. They are, in fact, “pseudoskeptics,” because they are selectively skeptical, rejecting the ideas of others while swallowing their own whole.

We never have complete control over the circumstances of life. What works one time may not work another. Walking down the street can be a gamble; after all, we could get hit by a bus. Yet if we live as if we must avoid all danger, we die in a state of constriction and loss.

Ideally, we learn to assess risk and to make choices that recognize risk and consider possible returns. If the return is high, we may take higher risks. That’s all rational game theory.

So if I get hit by a bus, does that mean it was a mistake to walk down the street? Perhaps it was a mistake to be inadequately careful, but no amount of care can avoid all risk. The risk is small, so normal response to it is reasonable caution. Continue reading “No payoff = bad bet?”

Unspecified “they” is always a figment of our imagination

T is for Them :: U is for Us

Joshg is one of the most coherent writers identifiable as Planet Rossi.

On LENR Forum, he wrote:

JedRothwell wrote:

I had high hopes that I.H. would fund research. I think they would have, but they have been derailed by the lawsuit. They fired the technical staff. They may be funding a few studies, but I doubt they will contribute significant amounts of money.

So that R&D center they opened up near Raleigh headed by Antonio La Gatta is just a figment of our imagination?

This is common on Planet Rossi: “they” is fuzzy and amorphous. Genuine questions:

  • Is there an “R&D center” opened “near Raleigh”?
  • If so, who opened it?
  • What does this have to do with Industrial Heat and their plans?

First of all, see this LENR Forum report, posted by Alain Coetmeur, in May, 2016. The company in question is HMRI R&D, Inc. The Registered Agent is Paul T. Winter, very likely this CPA. This is largely meaningless, CPAs often serve as registered agents with very little involvement in the actual business. The business office shown is 13000 Weston Parkway, Cary, NC 27513, which appears to be a 57,000 sq. foot office building, that was for sale and for lease in 2015. Other companies have the same address, so HMRI — or their accountant — may only have a small — or larger — office.

The creation filing, August 12, 2015, shows an “incorporator,” who is merely an attorney, Byron B. Kirkland with a Raleigh address, and then two initial Directors: Antonio La Gatta and John T. Vaughn, with the same address shown as is shown for the Registered Agent. These are the persons of interest.

Antonio La Gatta. La Gatta was working with R&D at TSEM, a sponsor of ICCF-19 in Padua in 2015. His sister is a manager of that company. She told the interviewer this, in May, 2015: “my brother Antonio will travel to the US to direct the new US operational units in Texas, in collaboration with MIT, Texas Tech University, Indusrial Heat [sic].”

This was a plan in May. While there may be a correct substance to it, it’s a confused rumor. “Collaboration” with MIT is meaningless. MIT is not involved with LENR. Peter Hagelstein, a professor of electrical engineering there, is. “Operational units” of what? TSEM? Perhaps HMRI is a “unit” of TSEM? As to Texas Tech, again, this would likely be a reference to the Duncan et al group there, which was announced at ICCF-19.

While a connection between Texas Tech and HMRI is certainly not impossible — they were looking for additional labs to work on the heat/helium project, beyond themselves and ENEA (Violante) in Italy — I have no information about such a connection. Industrial Heat is not connected to the Texas Tech project, which was independently funded.

However, Vaughn is an initial director. This is JT Vaughn, an officer of and investor in Industrial Heat — and a defendant in Rossi v. Darden. This news, however, does not establish that Industrial Heat “opened up a research center near Raleigh.” Cary is indeed close to Raleigh, about twelve miles. What is HMRI R&D up to?

There is some information in the Murray deposition, for which we have the full transcript. IH had a research operation, investigating various LENR approaches, and Murray reports on some of that. He testifies:

·1· · · · Q.· · Of all the systems you tested in Industrial
·2· ·Heat, were there any that you were able to validate and
·3· ·verify?
·4· · · · A.· · No.

This is thoroughly discouraging, for many. However, this, or most of this, may have been seeking to find a way for Plan A: rapid commercialization. Plan B was my name for retrenching, going back to the most basic science and nailing it. For Plan B, small results can still be very significant, even more so of the “small results” show correlations. Heat/helium is the quintessential Plan B project, because there are many supporting reports, and the vast bulk of the evidence confirms the correlation first reported by Miles in 1991. This has practically nothing to do with NiH research, which, if NiH effects are real and not artifact, would surely have some different ash. Murray goes on:

15· ·[…] And in many cases the heat that they were
16· ·producing, the excess heat, the anomalous heat was very
17· ·small.· They, they had amounts that were very small.
18· ·And so any small errors in their sensor systems or small
19· ·errors in their assumptions would mask that level.
20· · · · · · · So we went through and carefully analyzed
21· ·their data, and in a few cases we actually reproduced
22· ·their experiments.· We had two groups that in the
23· ·validation verification phase we came up with what I
24· ·would describe as nebulous results.· They weren’t
25· ·positive, but we certainly just couldn’t say here is a
·1· ·major problem that has to be overcome before we could
·2· ·legitimately verify and validate it.· And so in those
·3· ·cases we worked very closely with the inventors and
·4· ·organizations to help them do independent reproduction
·5· ·in our lab.
·6· · · · Q.· · Okay.· And those were successful
·7· ·reproductions?
·8· · · · A.· · No.· Ultimately, the reproductions, yeah, we
·9· ·didn’t find anything that had excess or anomalous heat.
[…]
15· · · · A.· · The first one was Dr. Mizuno in Japan.· That
16· ·was a plasma-based system.· And the second one, which
17· ·was very much at arms length, I did not have privy or
18· ·access to this one, was HMRI.· It was a, it was only a
19· ·partial investment into it.· And so I was kind of, me
20· ·and the rest of the engineering team were kept at arms
21· ·length.· We weren’t allowed to have access to all of
22· ·their data, so I just got summary reports and briefings
23· ·on some of the things they had done.
24· · · · Q.· · I thought you were able to reproduce their
25· ·experiments in your lab.
·1· · · · A.· · So, yeah.· No, we, what we did was, based on
·2· ·the limited knowledge we had of their system, we
·3· ·reproduced an electrolytic cell that to the best of our
·4· ·ability looked like what we had understood they were
·5· ·doing.· And we could not achieve the same results that
·6· ·they were giving us at this kind of arms length.

There is a little more description of the HMRI relationship:

25· […] Likewise with HMRI, the way the contract was
·1· ·structured, we were kind of at arms length, so we only
·2· ·got a little bit of information, and the information we
·3· ·were able to receive, we structured some experiments to
·4· ·understand it.· That was actually very late.· That was
·5· ·probably June of 2016.

There is more about HMRI, some misc findings, on Misc Mash. There is an indication that I could not confirm that an HMRI “proprietary process” was being “moved overseas.”

Back to Joshg’s claim, essentially that “IH” established HMRI “near Raleigh.” From what we have, HMRI is independent and the collaboration expected (from La Gatta’s sister) was arms-length, and limited. While there was likely some IH investment in HMRI, it was limited and it cannot be reasonably said that this Cary lab shows IH’s continued commitment to LENR research.

On Planet Rossi, though, extremely limited information is interpreted and extended and reports as fact, and then others repeat it and it becomes “well-known,” like the alleged $200 million investment by the Chinese, and then the question becomes “where did that money go,” rather than the question that would reasonably precede it, did it exist at all?

A brilliant example of all this arose on LENR Forum, it’s mentioned on the Misc Mash page.  March 2, 2016, David Nygren wrote:

Now we need to dig deeper! It is valued to over 1bn dollars?

IH HOLDINGS INTERNATIONAL LIMITED
https://beta.companieshouse.gov.uk/company/09553031/filing-history

This is not my field so please help. For you who are good at counting, do these tasks!
23M shares * $ 45 = weather over $ 1bn??

Here we have 20 companies listed (59 page / 8 Jun 2015)
https://beta.companieshouse.gov.uk/company/09553031/filing-history/MzEyMzczNDg0OGFkaXF6a2N4/document?format=pdf&download=0

Indeed, not his field. However, he does not show where the $45 came from. He links a listing of companies on a signature page for an authorization to issue Series A shares, i.e., ordinary shares, valued at $0.01 each, some for cash and some for other consideration. The total value to be alloted, I read as $11,098.78 plus $25.907.15, total $37,005.93. A tad short of $1 billion, eh?

Barty asked David what this meant. The blind leading the blind.

AlainCo provided some correct information (the $50 million investment by Woodford a few days later), but did not actually correct the Nygren error. AlainCo noted the use of different classes of shares that can allow company founders to retain control even when receiving a large investment. AlainCo’s other post on this, Mar 3, was much better but still confusing and inaccurate.

June 30, 2016, I came across the discussion, researched it, and corrected it, giving sources for everything. The Woodford investment has been incorrectly reported by news sources that apparently did not look at the original documents. Woodford invested exactly $50 million US. To be precise, Series A shares (not the original Series A, apparently, later called “ordinary shares”) were preferred shares, issued at $45.049996 per share, and two Woodford trusts bought 1,109,878 shares, which works out to $49,999,999.50. My guess is that they actually paid $50 million, so inquiring minds want to know where the extra fifty cents went.

sifferkoll immediately exploded:

are you playing stupid again Abd? I said $1bn valuation, which roughly means Woodford bought 5% of IH with $50M.

Later, I remembered the $1 billion error was sifferkoll’s, probably because of this post. My guess is that Siffer had written this on his blog — I’m not researching that now — and that Nygren had picked it up from there. Maybe. What Siffer is showing is a total lack of understanding as to how a company is valued, and what that means. Had Woodford purchased ordinary stock for $45 per share, this would have made some sense, though it would still not have created a billion dollars for Darden to somehow “disappear.” But Woodford did not do that.

My point here is that LENR Forum and those who write for it have no habit of correcting errors. We can see people coming up with false information years later, because they read it in a post, perhaps, in this case, a post by the Founder of LENR Forum. There is a reservoir of held ideas about IH and this case, based on what was stated back then based on assumptions from shallow research. “Toilet paper stock,” mentioned by Sifferkoll, is a common idea. “Shell corporations.” (But the only genuine shell corporation here is JM Products, Inc.)

Siffer wrote “Darden simply pocketed the money and made it dissappear [sic].” But what money? A billion dollars? In fact, Woodford invested $50 million and, while IH Holdings International doesn’t broadcast much detail, much of the money still exists, as cash or other holdings of IHHI (including some valuation for the Rossi License). Siffer has in mind a billion dollars that he made up, that never existed. And then there is the alleged $200 million from the Chinese, that apparently also never existed, or if it existed, it had little or nothing to do with Industrial Heat, it was Chinese money, invested in a Chinese project with very little connection with LENR, if any.

Minds open brains not falling out?

First of a sequence of comments on Lomax’s recent blog here on Shanahan’s review of Storms posted in LENR Forum.

Lomax writes:

Ah, Shahanan, obsessed with proof, lost science somewhere back. Science is about evidence, and testing evidence, not proof, and when our personal reactions colour how we weigh evidence, we can find ourselves way out on a limb. I’m interested in evidence supporting funding for research, and it is not necessary that anything be “proven,” but we do look at game theory and probabilities, etc.

I agree with Lomax’s second statement here. Science is exactly about weighing evidence. And I understand the explicitly acknowledged bias: Lomax wants more research in this area. I disagree with the statement that “Shanahan is obsessed with proof”. It would be accurate to say that Shanahan, both implicitly and explicitly, is looking for a much higher standard of evidence than Lomax. There is no proof in science but when evidence reaches an amount that overwhelms prior probabilities we think something is probably true. 99.99% and we call it proof. The numbers are arbitrary – some would set the bar to 99.9999% but this does not matter much because of the exponential way that probabilities combine.

Let us see in detail how this works. Continue reading “Minds open brains not falling out?”

Shanahan’s Folly, in Color

Well, a little color. As covered in It was an itsy-bitsy teenie weenie yellow polka dot error, Kirk Shanahan digitised a chart from page 87 of Storms, The Science of Low Energy Nuclear Reaction, even though the data was on the next page in Table 7. Ah, well, you do what you need to do.

So, today, I loaded the data in to a spreadsheet, and here it is, ODS, and if you need another format, ask. The first plot shows all the data, and looks like the Storms plot, but with a little extra and without the 23.8 MeV/He line; that is equivalent to about 2.6 x 10^11 He atoms/watt-sec.

Continue reading “Shanahan’s Folly, in Color”

With friends like this, does LENR need enemies?

On LENR Forum, kirkshanahan wrote:

It seems Krivit has issued me a challenge (Kirk Shanahan, Can You Explain This?) but provided no way to respond. So I’ll do it here…

My first answer is: Probably, what exactly do you need explained?

That was, of course, a direct answer to Krivit’s actual question. The post is undated, but it’s the latest “Recent News Article” at this point.

Krivit takes Fig. 1 from 1993Fleischmann-Pons-PLA-Simplicity and adds some lines to it to make the displayed figure.

And Fleischmann asks the question himself:

One can therefore pose the question: “How can it be that the temperature of the cell contents increases whereas the enthalpy input decreases with time. 9” Our answer to this dilemma naturally has been: “There is a source of enthalpy in the cells whose strength increases with time.” At a more quantitative level one sees that the magnitudes of these sources are such that explanations in terms of chemical changes must be excluded.

But Krivit is asking the question of Shanahan. Why? Slow news day? We know that Shanahan has alternative explanations, and most LENR researchers and students have rejected them, but what could be useful is a detailed and careful examination of them. Krivit refers in an update to Shanahan’s response, but it is more or less as expected, and Krivit does not address the issues.

Apparently he is unable to understand why the temperature can increase and the voltage decrease over time in the cell without excess energy from LENR being the cause.

For starters, Krivit refers to the plot of voltage as if it is a plot of power input. He’s not incorrect, because the experiment is likely constant current, in which case power will track voltage, but simply showing a voltage plot will not communicate that to a reader. There are also issues of possible bubble noise that could cause an error in measuring power. That has been addressed to my own satisfaction, but the point is that the matter is not as simple as Krivit imagines. To him, that plot would be a proof — proof, I tell you — of LENR. But it’s not going to convince any skeptic, without serious study. And I haven’t seen any converts from that plot. Shanahan went on:

I would suggest he read the section of my whitepaper discussing the flaws in the F&P calorimetric method. THH conveniently posted a link (Mar 2nd 2017 post #92 in thread “Validity of LENR Science…[split]” “Kirk’s white paper answering Marwan et al: https://drive.google.com/file/…b1doPc3otVGFUNDZKUDQ/view) to it. Then think it through while chanting “CCS CCS CCS”.

Kirk does not know how to make links work. When text is copied, as he did, the link may look like a link, but it’s been munged with those ellipses in the middle. It is one of the little joys of LF software. Rather, follow the link and then copy the full URL from the browser bar. Shanahan also could have copied the link to that post 92, the date stamp is a link that can be copied. That’s what I do. The post number is also a link.

Here is his white paper.

BTW, there are other reasons besides ATER/CCS for this as well (and I suspect the cause of the drift shown in the Figure is actually not ATER, that comes later in the paper). Ask an electrochemist.

Shanahan has never successfully shown actual flaws in the Fleischmann calorimetry; rather, he has alternate hypotheses, unconfirmed. However, this could deserve careful discussion here. The LF style sequential commentary doesn’t lead anywhere but to useless smoke.

We have to assume constant current for the discussion to make sense. Fleischmann doesn’t actually say that the input is from a constant current supply, but gives the current as 400 mA.

Krivit responded to Shanahan, but didn’t.

April 28, 2017 Update: Shananah’s response: “Probably.” [That’s the extent of Shanahan’s explanation. He provided no specific details as to how the cell temperature steadily rises while the input power steadily decreases over several days in this graph. Dr. Shanahan, if you want to reply further, please send your comments to the contact page here. I will publish them so long as your reply is specific and exclusive to this graph and your response reflects professional etiquette.]

Krivit does not answer Shanahan’s question … at all.

The input voltage shows a decreasing trend, not the power, that’s what the plot shows. And this is not “steadily.” (Nor is the temperature “steadily” increasing.) But, yes, we know that this is a decreased power input. Shanahan simply pointed to his paper. Does it propose mechanisms? Well, “CCS” is Shanahan’s code word for an effective shift in cell calibration caused by unexpected recombination or a shift in where recombination occurs. Some such shift, as an example, could indeed cause an effect as shown. As well, shifts in loading could create such effects. How large is the effect?

At 4.9 V and 400 mA, the input power is about 1.96 W. The claimed XP is 115 mW by the end of day 6, or about 5.9% of input power. In an SRI series, this would be considered barely reportable. However, FP calorimetry was reputed to be quite precise, on the level of 0.1 mW.

Why is the voltage going down? With constant current, the cell resistance is going down, so the power supply lowers the voltage to keep current constant. Here is my stab at it:

Water is being split into deuterium and oxygen. That’s endothermic. Then the deuterium is absorbed by the cathode. That is exothermic initially, but moves toward endothermic as loading reaches the values necessary for the FP Heat Effect. Fleischmann-Pons calculations include these issues (or they would not be accurate; these are open cells, not cells with a recombiner where the potential energy created when deuterium and oxygen are dissociated. If there is an unexpected shift in this chemistry, the XP values would be incorrect. Ideally, the gases are measured, and loading is monitored. It’s complex. This is not a job for Steve Knee-Jerk.

And it’s not a job for me, either, unless I’m prepared to put a lot of time into it. I would much prefer to see a careful discussion here, with THH and, I’d hope, Shanahan, and others, as well; here, I’d organize this so that useful content is created. He is totally free and invited to comment here. THH has author privileges and I’d give them to Kirk as well, in appreciation for his years of service as the Necessary Skeptic.


THH wrote:

Going back to the original post. LENR advocates would I think agree that they get relatively little scientific critiques from mainstream scientists, or indeed anyone who is technically competent and highly skeptical, so interested in finding holes in arguments.

All this is symptomatic that this is debate, not scientific investigation, where “sides” are arrayed against each other, rehashing old issues, with issues never being fully resolved, with true consensus being elusive. To me, the big disappointment was the 2004 U.S. DoE review. It was superficial and hasty, like much with LENR. The review made claims pretending to be reports that were not supported by the review paper evidence (that were actually contradictory to it). The review process obviously did not include serious, interactive analysis of data, where errors would be corrected, instead they were allowed to stand.

The review did agree that further research was warranted, and half the panel considered that the anomalous heat was real, i.e., at least there is an anomaly — or collection of them — to investigate. If the DoE had actually been paying serious attention, they would have established a LENR desk. For their part, the review paper authors made no specific request. So they got no specific result. Funny how that works.

They need that. So I find no excuse for the process Kirk notes in the first posts here. Marwan et al may believe they have settled Kirk’s points. More likely (and my judgement reading the source material) they have partially addressed them.

… and possibly in a somewhat misleading way. However, the context is important. Kirk had been criticising LENR research strongly, on the internet, since the 1990s. I attempted to search for his posts on vortex-l, but that list is archived in zipfiles that Google does not search. Practically useless, typical Beatty.

Kirk’s points were answered again and again. To his mind, those answers were inadequate. I met Kirk on Wikipedia in 2009, when I first started investigating cold fusion. I saw him as the last standing major critic. I attempted to support examination of his ideas. I found him hostile and combative. I also attempted to present his ideas on Wikiversity. He cooperated with none of it.

If there are errors on Wikiversity, anyone could correct them.

The way to elucidate this is for them to defend their work against critiques of their defence – not to ignore the critiques of the defence and answer only the original points. Kirk similarly of course, but in this case I have noticed this phenomena less, he picks up on nearly all of the points made by Marwan et al.

His Letter to JEM was the last stand of published LENR critique. He has complained that JEM would not publish his final reply. This would be an editorial decision, not that of the scientists who replied to him, called the “Marwan” critique. Marwan and Krivit were the original authors, and Krivit dropped out, claiming editorial misbehavior. Vintage Krivit.

The Letter contained gross errors, so bad that the respondents did not even address them (and apparently did not understand them), and it was on a crucial point, Shanahan claiming to have analyzed data in a chart published by Storms, finding low correlation between heat and helium, when the chart actually shows quite the opposite. Shanahan had misunderstood the chart, which showed the scatter in heat/helium results, so the x-axis was heat and the y-axis was helium/heat. As the operating hypothesis is that there is an experimental ratio between heat and helium, that this may be a constant except for experimental error, what is actually shown is that as heat increases, the ratio settles, as would be expected from the lessening effect of fixed experimental errors. If the experimental data were perfect, there would be no correlation between heat and helium/heat. It took a long time before Shanahan admitted he had erred. His first response when I pointed it out to him was on the lines of “You will do anything to cling to your beliefs.” Pot, meet kettle.

That is water under the bridge.

From such a to and fro one can obtained a balanced view of the likely validity of each point. Normally both sides end up agreeing, or at least agreeing that areas of disagreement require further work. Typically what happens here is that points made are valid for a specific set of circumstances, and elucidating whether than covers the matters of interest takes time and effort.

The issue here is not primarily about who is right in this exchange. It is about how you convince independent observers that you are right.

Anyone with that goal has left science and is dwelling in politics and attachments. The assumption THH is operating on is adversarial, not collaborative. It’s also personal. Convince others “that you are right.

I prefer to set up process that will facilitate finding consensus, which may include creating new experimental results to clarify issues. There is a place in this for review and discussion of what has already been done, and I hope that this can take place here, but Wikiversity could also be appropriate.

See Cold fusion

Skeptical arguments

Shanahan

Many interested in cold fusion complain about Wikipedia suppression, but few, hardly any, would participate on Wikiversity, I found, which has standards much more like those of academia, it is not an “encyclopedia,” but more like an eclectic combination of university library, seminars, and studies, including student work.

In theory, then, Wikipedia would link to Wikiversity for “further study.” That would be standard, but was always suppressed by the dominant faction on Wikipedia. It is one of the actions of that faction that would not have been supported by the full Wikipedia community, but they got away with it because of lack of attention and clear stand, lack of unity and collaboration among supporters of cold fusion, or such collaboration expressed not in accordance with Wikipedia policies. Basically, the faction banned the editors with the editorial skills needed (such as myself and pcarbonn). They were about personal winning, and not actually aligned with Wikipedia policy.

In any case, I have uploaded the documents here:

The Marwan et al response to Shanahan

The Shanahan white paper

Why scientists oppose cold fusion

This appeared on Peter Gluck’s blog. It was based on a private CMNS list conversation, I think I can reveal that. Ed Storms gave permission for Peter to publish it (as Ed normally does). If others give permission for me to publish their private comments, I will, but this is what was on EGO OUT. My comments are in indented italics.


Inspired by ALAN SMITH who will speak about “Why Scientists Oppose Cold Fusion” at a conference at April, 30 invited by Prof. Huw Price
Event already announced by this blog

LENR THINKER

Edmund Storms’ opinion/answer to Alan Smith’s presentation to come

Alan, this is a good question that needs a straight answer. New ideas are always rejected initially. Normally, this rejection is half-hearted and short-lived. In the case of cold fusion, the rejection was clearly orchestrated and has been sustained.

Ed has become cynical and often despairing. There was a level of organization to the rejection, but that was not the only factor; the rejection was natural, in many ways, and ascribing causation to a conspiracy that existed (rather openly) misses the deeper causes and, to the extent that this became a common reaction in the LENR research community, it disempowered it, because the true failures were then overlooked and what could have and — I’d say “should have” — been the community response was, for the most part, reactive instead of collaborative.

To understand this strong opposition, we need to consider how the energy resulting from cold fusion would threaten and destabilize the world-wide energy economies. This economic system is so large and so connected with the economic life of nations that the threat had to be fought. In other words, the response is based on self-interest and not on the difficulty in understanding the phenomenon. The people in charge know full well that given enough resources, science will eventually master LENR. This success would clearly result in economic chaos. That threat has not changed.

This sets up a very-likely-imaginary view of the “enemies of LENR,” and assigns them vast power as well as high motivation. Struggling against that confuses us and is a formula for failure. Instead of understanding the skepticism, and cooperating with it, taking it as a reality to be addressed clearly and with confidence in the ultimate prevalence of truth — which we have no monopoly on — we created and maintained an idea that it was all useless, because “they” would not let us succeed.

“Just because you are paranoid does not mean that they aren’t out to get you,” is not a confirmation of the “truth” of paranoia, and it does not matter what “they” do, it matters what we do. Conspiracy theories are associated with losers, not because there is no conspiracy, but because the idea that there is, if it is allowed to dominate our thinking, is guaranteed to disempower us.

Evidence for this conclusion can be found when the nations and industries that are now investigating this energy source are examined. The two countries desperately in need of clean energy, Japan and China, have major programs and the companies developing megacomputer servers are interested.

Japanese funding for LENR research is thin. This is not clear evidence for the “conclusion,” it is weak, circumstantial, and probably misleading.

These countries and industries are interested because they have a self-interest that over rides the potential threat. I predict success by these efforts will force the rest of the countries and companies to develop the energy source as a means of self defense.

A major breakthrough anywhere would lead to such effects. This is Plan A. A hope of this was behind the level of support for Rossi’s work that arose in the CMNS community. It was argument from conclusions, and we abandoned, to the extent that we did this, ordinary scientific skepticism and reserve. We abandoned the normal necessity of truly independent confirmation, some of us. Plan B, is my term for the ordinary process of science, as recommended by both U.S. DoE reviews (but not funded by them, probably due to political forces). Plan B is not reactive and is not designed to “prove” anything, but to confirm — or disconfirm –, with increased precision, what has already been reported, with a special focus on what is already independently confirmed, i.e., on research very likely to generate useful results, not speculative.

Plan B is the follow-up research, the process of replication of experimental results. It is not “replication” that is actually vague confirmation of a class of results, without being specific and measurable, i.e., “some anomalous heat” — but unreliable — or “some nuclear result” — but not correlated with heat. Plan B takes the best research and attempts to improve precision, to expand confirmation, to general results that can be analyzed and compared statistically.

In other words, rejection has put off the day of reckoning but it has not eliminated the problem. Therefore, the threat needs to be understood and solved because this energy will eventually be available on a commercial scale. Unless introduction of this energy into the system is done in an effective way, chaos will surely result. The energy industry needs to figure out how to prevent this chaos rather than reject the idea because rejection is no longer working.

This is the thinking behind the suspicion, generally among supporters of Andrea Rossi, that Industrial Heat’s goal was to destroy Rossi’s reputation, to suppress his technology, argued with a justification that some Industrial Heat investors have investments in or have consulted with regard to solar energy. This would allegedly demolish their solar energy investments. Much more clearly, though, if they were successful with LENR, and owning licenses, the profits would dwarf any possible losses with solar power. The same argument applies to oil companies: some of them have supported LENR research, which could be viewed as a hedge. Viewing a competing technology as a threat rather than as an opportunity is a formula for ultimate failure. Sane investors see opportunities, not threats, as such. (They will see how variant technologies will alter the overall economics, and will balance risks and possibilities.) I doubt that Toyota stopped funding Pons in France because of this “threat.” Rather, the results did not have the clear commercial implications that might have been needed for continued funding.

Meanwhile, the phenomenon is a challenge to understand in the context of conventional nuclear interaction.

It is not a “conventional nuclear interaction,” so, of course! We don’t know what it is, even if some of us think we do. We know what it does, but not how it does it.  If we converse with the skeptics from a position that we understand the mechanism, it better be good! and not merely a speculation with many missing pieces, details to be filled in later.

This challenge is attracting young minds who will eventually discover how LENR works.

That skips a very necessary step. Ed’s focus on “figuring out how it works,” i.e., the detailed mechanism, when the reality of the effect has not been clearly and unmistakeably nailed down and demonstrated so that those young minds are not facing career suicide through an interest in LENR, puts the cart before the horse. The horse is — or will be — fully confirmed and published experimental reality, then creating something needing explanation, even if that is difficult, even if it might take the combined mainstream scientific community decades to develop.

It is not necessary to satisfy everyone. It is only necessary to satisfy funding sources (as we have seen with the Texas Tech heat/helium initiative) and develop peer-review-published cover for academics to 

This process is being accelerated by the increasing amount of information that is easily available on the web. The conventional journals no longer have the power to control information. In fact, LENR is part of the revolution in understanding that is now underway on the web involving many unconventional ideas.

It is essential for the breakthrough that will lead to adequate acceptability for LENR research, that will open the doors for graduate students to choose LENR study, that work be published in the journal system. It is possible that if true suppression continues, this could be challenged to break the back of it, but it is not clear that true suppression continues. Many CMNS scientists stopped submitting articles to major journals. It’s understandable, but it is not helpful overall.

So the message is; change is underway, either adapt or die.

We are all going to die. Adaptation allows us to live powerfully until we die.

Blaming the skeptics (and the “enemies of LENR”) is a failed strategy. I see nothing in Ed’s analysis that provides guidance for moving forward. Ed has made some quite interesting discoveries that may be related to his theories, but that do not depend on them. It is taking years for this work to be confirmed or disconfirmed. Why? Some of it is quite simple.

For example, excess heat in the Fleischmann-Pons experiment has long been correlated — or suspected to be correlated — with electrolyte temperature. However, heating the electrolyte has been avoided because it then leads to lowered COP, if the heating is done directly. Avoiding low COP was a reaction to skepticism. In fact, raising electrolyte temperature only requires continuous input power due to losses, and this is easily controlled and the effect on calorimetry is well-known, and heat-reduction calorimetry can be used, to maintain constant temperature, and constant temperature reduces the experimental variables, leading to improved understanding.

And Ed found that if the electrolyte temperature was maintained, elevated, though below boiling, anomalous heat continued even if electrolysis current was shut down. This was actually “heat after death,” but because of the input power for heating, might not be seen as such. However, with insulation, if desired, the temperature maintenance power could be reduced and with good enough insulation and with enough anomalous power, input power might actually be eliminated entirely, requiring temperature control through cooling.

That continued anomalous power did not depend on “current density,” i.e., electrolytic power, appeared contrary to prior studies. But it is possible. Has this been confirmed — or disconfirmed? Not to my knowledge.

No goal, no go, just drift

One of our best conversations here started with this commentary by THH on a blog post with a frivolous title, Touch and go at the Planet Rossi spaceport.

I’m interested in the U of Texas work. But there are many subtleties about how to eliminate mundane explanations. How sure are you that they are looking at this more rigorously than LENR typical?

Okay, one question or issue at a time. How sure am I? While Stuff Can Happen — even masters at a craft can make mistakes — there are, indeed, some masters involved, professionals, highly experienced, and fully aware of the history of LENR and, my sense, fully aware of what is needed for a LENR breakthrough. I’m a bit concerned about lack of recent communication, but this merely a reminder to self to make it happen. Continue reading “No goal, no go, just drift”

Validity of LENR Science

I tend to write about what is in front of my face. On LENR Forum, digressions on the thread, Rossi v. Darden developments Part 2, were finally split to new threads. So the following appears as if it were a new post. I will get to the topic at #Validity, after looking at the administrative aspects.  Continue reading “Validity of LENR Science”

Pseudoskepticism vs Skepticism: Case studies:

There are some resident skeptics on LENR Forum. There is no clear dividing line between “skeptic” and “person interested in science.” However, pseudoskepticism, by the name, imitates genuine skepticism. The core of it is skepticism toward the claims and views of others, combined with apparent certainty — or at least practical certainty — toward one’s own beliefs. A pseudoskeptic may often assert that, no, they don’t believe in their own beliefs, but this is simply denial, and the belief is obvious to the discerning and knowledgeable.

“Pseudoskeptic” is not a complete description of any person. No argument is wrong because it is advanced by a pseudoskeptic and, in fact, most pseudoskeptics hew toward the mainstream, and a result of that could be that there is a substantial possibility that they are right. Continue reading “Pseudoskepticism vs Skepticism: Case studies:”

Conversations: Simon Derricutt 2

Continuing the conversation:

(Abd comments in indented italics.)

Simon Derricutt wrote:

Abd – my memory runs a bit different than most, I think. When I was designing digital circuits I found I needed to know far more than my brain could actually hold, and of course the half-life of knowledge in electronics design was somewhere around 18 months then. I needed to have a lot of books (and later on CDs) open at the same time to be able to check on precise details of any particular component. I thus learnt to hold only the important points and an index in my head, and I really only needed to be able to find the information quickly. These days I tend to only note the important points and rely on a search to find the source data.

Of course. Especially as we age, holding a lot of information as readily accessible becomes more and more difficult. However, key concept: it is still there if it has been seen. Then intuition functions to bring up associations with it. It’s crucial to recognize the fuzziness of all this. Intuition provides indications based on that massive association engine, the human brain. Then we verify and confirm (or correct), and each time we do that, our “understanding” — a fuzzy concept, generally — becomes deeper.

As such, I noted the fact of the cloud-chamber experiment, and that it was stated at the time that the Nickel was the obvious source (tracks have one end on the Nickel) and that it decayed over a couple of hours. I will need to search for that source again. Krivit mentions it in your link, but not in the detail I remember. As you say, though, Piantelli did keep secrets – maybe in the hope of achieving a working system first. Since cloud-chambers were used initially as a quantitative test, some of the disclaimers seem a bit odd.

I cited the apparent original publication. In addition, as I mentioned, Krivit has it. There are two photos, showing two tracks, both originating in the nickel. The cloud chamber examination was two months after the experiment, so they would not have, in a short time, been able to see the decay you remember. I think others have assumed that the cloud chamber examination was prompt, so maybe you read this elsewhere. One of the problems in the field is a lack of clean-up. I worked on a Wikiversity resource where that could happen, but there has been, so far, little interest and participation. Posts on this blog can be cleaned up, but that is going to require wider participation. “Journalists” like Krivit are interested in the flash, not so much in building reliable resoruces; Krivit will sometimes add a note about an error, leaving what was based on it prominent and obvious (and in error) while the correction is obscure.

Maybe I’ve spent too much time reading comments on the blogs, but the general impression I get there at least is that something dramatic is needed to reverse the rejection.

Yes, that opinion is common. As to too much time, the harm is only if you believe what you read as accurate; even when the general sense is sound, the details are often off. I’ve often been accused of nit-picking, but if you’ve got nits, you’ve got lice. In an academic environment, courtesy would be to thank people for corrections! There has been a search for the dramatic for about 27 years. As my trainer would say, “How’s it workin’ for ya?”

Instead of accepting what we had, and then using ordinarily scientific techniques to study it, to characterize it, to create data that can be subjected to statistical analysis, etc., too many kept changing their protocols, looking for something better than what Nature was revealing. This created a vast pile of essentially anecdotal evidence.

Miles went beyond that (and so did McKubre and SRI). There is a lost performative in much of the thinking of the cold fusion community: convincing to whom? Once there was the idea of a vast rejection cascade, the mass of “mainstream scientists,” who must be convinced, a paradox was set up: a rejection cascade means that a general consensus has formed of bogosity, and such a consensus requires truly extraordinary evidence to overturn, and “extraordinary evidence” has been misunderstood to mean some specific demonstration that simply can’t be explained any other way than by a nuclear reaction. Yet such demonstrations have existed for many years. The vast majority of them are not reliable, i.e., there is no specific protocol to follow that will generate the effect, that is both convincing and easily replicable. If it is not easy to replicate, and with the expectation of bogosity, who will bother?

Absolutely, a reliable high-heat experiment that could be reduced to a reliable kit, if it is inexpensive, would manage the revolution. Got one? You mention the Nanor and a possible price of $30,000. If that is a fair price, this thing is far, far too expensive for something reported to generate a few milliwatts. Few would buy it, if any, but IH might — and, in fact, I would not be surprised to find out that they have already arranged independent testing. They are working with Hagelstein and the connection between Hagelstein and Swartz is close enough that Hagelstein would not talk with me, because Swartz. He did not explain, but it was obvious.

If a “believer” buys such a kit, tries it, and confirms heat, what then? The report would not be trusted, unless it was very unusual for a cold fusion report, and could be confirmed without buying another device. But if the kit comes with an NDA, this is useless (though a prohibition against dismantling it could be acceptable, if the heat levels are high enough).

This is the bottom line: Plan A does not require public support, it basically asks us to do nothing until the Home Depot product appears, or the like, a true, available, commercial product. So great. I can enjoy the weather or whatever, politics, how about carbohydrates in human diet?

Relying on Plan A is disempowering! It more or less assumes that nothing can be done, but someone (Rossi? Who?) will save us. If what Fleischmann thought was correct, i.e., that it would take a Manhattan-scale project to commercialize cold fusion, we might be waiting a long time. Who is going to invest billions without a solid science foundation?

Pointing out how accurately P+F could measure heat flows, or the correlation in Miles, just leaves the sceptics still sceptical.

Again, by being fuzzy about whom we would seek to convince, we leave ourselves up the creek without a paddle. First of all, if we care about science, we must be skeptics. It’s essential to the method. Secondly, it is not necessary to try to change the minds of skeptics. Behind this is an idea that they are wrong, and if you believe someone is wrong, you will almost certainly have damaged access to them. What can be done is to ask skeptics to review evidence, to suggest experimental tests, to help design good work. Some of us have many years of study of the field. When we see a skeptical objection, we may rush to correct errors. Far more powerful is the Socratic method, i.e., bring evidence before the skeptic, asking for review.

Most of the well-known skeptics cannot handle this. And trying to convince them is mostly a waste of time; what they write can be useful in exposing the array of proposed artifacts or errors. The goal of convincing skeptics leaves us out of the equation. Rather, we would properly be constantly looking to prove ourselves wrong. If we fail, maybe some skeptic can help us! I’ve been reviewing some old discussions, where Thomas Clarke was very active. To me, he appears to be a genuine skeptic, not a pseudoskeptic. We need more people like him…

It is not necessary to convince the mainstream. What is necessary is to convince editors at a mainstream publication that a foundational paper is worth publishing. That’s a specific group of people. While it is possible to create political pressure, that is not where to start, because any attempt to try to force someone to abandon their prejudices will create back-pressure, resistance. It is necessary to convince, for a given project, a single funding source, and such exist that are not attached to cold fusion being bogus.

What I saw, within a couple of years of beginning my study of LENR, is that there was little effort going into foundational science, and heat/helium was occasionally mentioned, often without the critical correlation information. The Miles work is apparently reliable. Without requiring a reliable heat-generating protocol, it is only necessary to have some heat, enough for significance, and then the ratio can be estimated.

This was most missed: Huizenga recognized the importance of Miles. Instead of imagining Huizenga with fangs, that demon who attempted to destroy cold fusion, we needed to underscore what he had done. By that time, the early 1990s, the rejection cascade was entrenched. But why wasn’t there more follow-up to Miles. I certainly don’t have the whole story, but much of it was politics, and specifically a strategic decision made by Pons and Fleischmann. For starters, the helium results they had seemed to negate their theory of a bulk reaction. The appearance is that they torpedoed the Morrey collaboration that could have established cold fusion, firmly, by 1990. Why? The only reliable result (the ratio of heat to heluim) in the field was largely ignored, and was still being ignored when I recognized it from reading Storms. I began conversations with him, and he agreed to write a paper on it.

He submitted the paper to Naturwissenschaften, and they came back and said that they would prefer a review of the field. He then wrote his 2010 review. I think it was a mistake (though easily understandable). A focused paper on heat/helium would have been far more powerful; instead that clear message was diluted by a mass of details, and the same thing had happened in the 2004 U.S. DoE review. Hagelstein et al through everything and the kitchen sink at the panel, apparently assuming that the weight of the papers — it was huge — would cause all skeptical objection to collapse, but the crucial information was buried in all that detail. Most of it was targeted to there being “something nuclear.”

And people still argue that way. It’s fuzzy and unconvincing, except for someone who undertakes seriously independent study, and to do this objectively probably takes years.

But my Current Science paper often elicits positive responses from skeptics. Essentially, they agree that this is worth further investigation, and that is a huge breakthrough! It only takes a few to expand understanding of LENR.

The cold fusion community is very poorly organized. Suppose some graduate student’s thesis is rejected because it related to cold fusion. This actually happened (in 1990?). How quickly would we have pickets on-site? Is there a community consensus about the most important necessary investigations? Short Answer: No.

(But there is a relatively broad agreement that the heat/helium work is worth doing. To be sure, when I first started chatting up this idea, there was objection, basically on the level of “we already know this so it is a waste of time.” However, it was not — and is not — necessary to convince everyone. In the end, it is the funding source that must be convinced. Do we have professional fund-raisers involved? Not until Industrial Heat, AFAIK!)

The reason that Thermacore didn’t repeat their test was that they were not certain whether there was a chance of a fission-type explosion, and I presume Brian Ahern will run his test at a sufficient distance, just in case it isn’t a benign meltdown. You are right in some ways that it won’t help, but if it works it will change the atmosphere from a refusal to believe to an acceptance that there is a real effect.

There is a good chance that it will work. I predict that, unless other aspects of the context change, it will change only one aspect of LENR community opinion: the reputation of NiH will go up. It will have no impact, in itself, on mainstream opinion, unless there is far more there than a single meltdown (i.e., exact replication!). If there is major heat, then a Miles-class study might identify the ash. If Storms is correct, the major ash would be deuterium, tricky to measure, but with a lot of heat, it could be done.

Ideally, if Ahern cannot confirm LENR with the Thermacore experiment, perhaps he can identify artifact. That would be quite useful, and too little work of this kind has been done. We must stop thinking of “negative replications” as bad. The data is golden, it is only premature conclusions which create problems.

It may make possible the years of work then needed to explore the parameter space. This, I think, is the value of an “impressive” demonstration at this moment. I think “dramatic” may be a better description. I thus think Brian’s experiment is actually useful at this time, though earlier on it may have backfired by giving Rossi a peg to hang his story on.

It’s speculative, Simon. It’s Brian’s time to spend, and possibly his money. To progress, it is not necessary to convince everyone. Key, for me, is prioritizing what will then loosen up funding and support. A search for Massive Heat could be very, very expensive, much more expensive than fundamental research. However, the same group as is doing heat/helium also has a planned program with exploding wires, prior work having shown an ability to quickly test materials for LENR in this way. Color me skeptical, but … they do know what they are doing!

You are right that I’m hoping for something to convince scientists that there is something real to be investigated, and that thus there will be more tolerance of those that do investigate and less rejection of results that are against current theory. Back in 2011, when I was not convinced by Rossi, I spent around 3 months reading lenr-canr.org (thanks, Jed!) and ended up considering that the effect itself was real and worth investigation.

Most who engage in that long-term study come to that conclusion. Consider that half the 2004 U.S. DoE panel considered that the evidence for an anomalous heat effect was conclusive. Conclusive. That’s a big word! And that panel was unanimous in recommending research on fundamental issues. So, that being 13 years ago, what happened? Bottom line: we did not hire APCO. We sat around like victims, bemoaning that nobody would listen to us. Many of the old-timers are wallowing in despair. It’s embarrassing! My message has been, hey, guys, you won! How about starting to behave as if you did?

How about the generosity of victors?

Rossi’s control-system was crazy.

Well, depends on the purpose, doesn’t it? Given the massive appearance of at least some kind of fraud, his control system worked for him. It made no sense for a commercial system, but we don’t know exactly how the 1 MW plant control system worked. It had the potential of controlling cooling, which is what would be needed. I would imagine, as well, thermal plugs that would open at overtemperature to overcool, rapidly, a reactor, in case the normal control failed. The reactors have to have an insulating space, to allow the reactor temperature to be higher than the coolant temperature. A thermal plug could flood that space, it might destroy the reactor, maybe, but better than an explosion.

Boilers are dangerous, as Jed has been pointing out. A 1 MW plant would be very, very dangerous, making one without having years of experience, bad idea. Rossi’s whole 1 MW plan was grandiose, and obviously so. It was not good business, at all. Unless the goal were fraud!

Mitch Swartz did run LENR 101 courses at MIT, and demonstrated the system running. Yes, it was proprietary and he wanted to make money from solving it, but in the course of that he’s also produced students who believe LENR is real because they’ve seen it, and thus there’s a better chance of one of them getting a good theory that is crazy enough to be true. That’s the advantage of the newly-minted physicists where they haven’t been told something is impossible.

I’ve heard Mitchell speak. He is quite different from, say, McKubre, or Hagelstein, for that matter. Both are cautious. Swartz is flamboyant and dramatic, he has a story about how horrible the U.S. Patent Office is. The actual history deviates a bit from how he tells it. It is not clear what the audience was for those courses, many came from outside. Someone who “believes LENR is real because they’ve seen it,” though, is, from those demonstrations, inadequately cautions and would be unable to handle community pressure, because, as McKubre has said, watching excess heat is like watching paint dry. At the level of heat involved with those demonstrations, there really is almost nothing to see, and then one must trust the analysis of the demonstrator.

It is not difficult to overcome the “impossible” meme. The simplest way is to ask what it is that is impossible. Imaginary conversation, using Nate Hoffman’s Old Metallurgist and Young Scientist:

OM: You say that cold fusion is impossible. What does that mean?

YS: Fusion at room temperature is impossible!

OM: Why?

YS: The coulomb barrier.

OM: The coulomb barrier must be overcome for the nuclei to get close enough to fuse. Is that it?

YS: Yes. To get close enough, an incoming nucleus must have enough energy to climb that barrier.

OM: Yes. Easy to understand. Now, what about muon-catalyzed fusion?

[Watch as eyes betray internal confusion, unless they have extensive experience with this process.]

YS: That’s not the same! There are no muons present!

OM: How do you know?

YS: Well, they would have been reported!

OM: Yes, I’d think so. But you just said LENR was impossible at low temperatures! Was that accurate?

YS: Obviously I had forgotten about muon-catalyzed fusion.

OM: Okay, we are now talking about possibilities, not realities as such. It is possible that there is some form of catalysis other than with muons?

YS: I can’t imagine it.

OM: Right! However, can you say that it is impossible?

If, at this point, they insist that something unknown is impossible, see if there is something else useful to talk about, because they are absolutely nailed to a pseudoscientific claim, unverifiable. Humiliating them by rubbing their nose in it will not make any friends. However, many scientists at this point would acknowledge possibility, but might still assert improbability, with a fairly good argument:

YS: If this existed, we would have seen evidence for it already.

And at that point, one takes them through the existing evidence. If they start wanting to see proof, tell them that proof is for fanatics, that science runs on the preponderance of the evidence, and begins when we start to actually look at evidence rather than simply shoving ideas and beliefs around.

Mills is not claiming LENR because his theory says it isn’t, and if LENR is shown to happen then his patents are only worth the paper they are written on. I think that some of his measurements (maybe a lot of them) are probably good but that the explanation is not right. I suspect he’s got part of the puzzle.

Frankly, I have only expectation from having watched Mills for years, and I know that such expectations can be different from reality. I’m not considering investing in BLP, so I don’t have any need to know at all. I know that LENR is real, heat/helium nails it, as to any reasonable preponderance of the evidence. So research into a reality is useful, regardless of whatever happens with Mills and hydrino theory.

One of the hazards of coming to accept the reality of LENR in the face of what appears as scientific consensus is that we become, then, more vulnerable to unreasonable acceptance of other wild claims. However, this is the thing about apparent consensus. It is usually right, or at least partially right. We tend to focus on the exceptions, which certainly exist. However, social mechanisms do not need to always be right, it is enough if they, overall, increase survival efficiency. Then we have faculties for dealing with exceptions, but most people are not trained in them. It can take training!

I’m maybe not the best person in persuasion, since I just present what I think is true and why. As such, when I’m explaining something against what they believe, it requires them to think about things. Maybe that’s why my Free Work idea has languished for a while….

Ya think? Simon, there is a whole ontology and body of practice for dealing with transformation. Your idea is reasonably common among smart people, smart but untrained. It is disempowering, as you may realize.

If you present what you think is true, your presentation will be, frankly, half-assed. The first step is not our expression of “truth,” because that’s a fantasy, not reality. The first step is listening! In my training, convincing someone of something is actually rejected as a goal. One of my program leaders called it “slimy.” The goal is to present opportunities for a person to make a choice, hopefully an informed choice. Believing that we know what is right for others (“the truth”) is arrogant! However, you do have your experience to share, as it may be appropriate, and you will know far better what is appropriate if you have “listened with loud ears.” 

Open doors and widows [sic]? A nice mind-picture.

Thanks. Words can do that. Widows also open, but in a different way.

AFAIK we still don’t have an exact solution for a 3-body gravitational problem except in cases of 3-way symmetry. There are now so many quasi-particles around that a solution for solid-state has to be a numerical approximation, and maybe even then we don’t have enough variables tagged.

Bottom line, and it’s quite simple: what we don’t know is huge. In the training, a circle is drawn, the “circle of all knowledge.” Then there is a small wedge drawn, a pie slice. “What we know that we know.” And then another slice, next to it, “What we know that we don’t know.” And then the rest of the circle (most of it) is labelled with DKDK. What we don’t know that we don’t know, and it is then said that this is where transformation comes from.

Then the training proceeds to demonstrate this, in many ways, and in extended training, it is not uncommon to see what would appear as miracles, unreasonable results arise anyway, etc. At no point is one asked to “believe in” anything. That is not how it works.

“The point is not at all to convince the person that cold fusion is actually happening, only perhaps that (1) it is not impossible, (2) there is evidence for it, (3) the idea is testable, and (4) tests are under way, fully funded.”
That’s a good plan.

Thanks. I thought so, and so did others, who encouraged me.

At the time, I noted the LR115 but I think you also had CR39 available if required. Long time ago, so I said CR39 now as the better-known sensor material that I could remember. Still, I couldn’t see the point of replicating the experiment myself just to be able to say I’d done it.

Nobody has replicated the SPAWAR neutron findings, so there is another purpose. I only have a little CR-39, quite old, that was given to me. It requires development at higher temperatures with more concentrated NaOH, it’s more dangerous. Yes, it’s better known, but LR-115 tracks are crystal clear, because a full track is clear, bright, against a red background. It’s a thin detector layer, much more precise, and then stacking is possible. I’ve thought about experimenting with the basic CR-39 material to make my own detector layers and perhaps color them. Again, this is something that could be done at home. Basically the material can be dissolved, I think it is in MEK, and then that can be evaporated. One would simply want good ventilation, MEK fumes are not safe.

One advantage of CR-39 is apparently a broader detection range for particle energies. LR-115 has a narrower range. (If a particle’s energy is higher, the energy deposited per unit length goes down, until high energy particles leave no track. In my images of alpha tracks, they are a long cone, and the fat end is where the particle was almost stopped.)

For Rossi’s systems to self-loop, there would need to be a heat-to-electricity conversion in order to supply the high-grade heat needed. A Sterling engine would do this better than a steam engine. The claimed COP was big-enough to do this. Controlled (and rapid) cooling would be needed as well, but nothing too difficult to design.

There is a much easier way for self-loop, that does not require electrical conversion, if it is acceptable to have powered start-up, and that is taking the fuel into self-sustain, but controlled cooling above self-sustain temperature, but below the point of damage. I.e., if the reactor is below self-sustain temperature, cooling is off, the reactor is heated to start, presumably electrically, though gas-fired would certainly be possible. As it reaches self-sustain temperature, and passes it, no more heating should be needed, input power would go to zero (except for control systems, of course, and those should not use much power, it is only imagining that it’s needed to heat the reactor that leads to much higher power needs).

The Rossi claim that he needs to keep the reactor temperature low, because of the risk of runaway, indicates that there is a self-sustain temperature that Rossi is staying short of. With good insulation, heat generated remains and increases the reactor temperature. Obviously, if cooling remains constant, at self-sustain, the reactor would run away, because control through heating would be lost at this temperature. So, obviously, one needs tightly controlled cooling. I thought of an array of mirrors that would reflect heat back at the reactor, but that could be rotated to let heat through. However, pressurized water cooling could be simple. At any time the cooling can be increased to take the reactor below self-sustain and it would shut down. If necessary, the water could be — with suitable venting! — brought into contact with the reactor chamber itself, very rapidly cooling it through flash boiling.

Basically, if the fuel exists that would behave as needed, engineering a self-powered reactor should not be difficult. The problems are with reliability of the reaction itself. If there is a fuel that would work, for how long would it work? For “proof” purposes, it needs to work long enough to generate enough energy to be well beyond the possibility of chemistry. That is not necessary for science, though it would obviously be desirable.

For IH, once I understood that they didn’t necessarily believe Rossi but were instead forcing him to reveal what he had, their strategy made sense.

Right. What they did was allow the possibility of it being real. If they had “believed” that it was fraud, 

IIRC, Miles’ experiment took around a year to do. As such, I didn’t really expect it to be replicated even with the prospect of better accuracy since there has been a lot of thinking since.

Well, the difficult thing is getting the reaction to happen at all. The actual heat/helium measurements were not so time-consuming. I don’t expect exact replication of Miles, as such. Miles has already been confirmed in a more general sense, i.e., electrolytic PdD. Remarkably, a Miles outlier, his PdCe cathode, shows that there may be unknown sensitivities. I hope that PdCe is eventually tried and that, if anodic etching does not release helium expected from the heat, that the cell is thoroughly analyzed. However, I would not suggest any altered cathodes for initial work. The point is to build up data that can be correlated across many samples. Exactly what they do will depend on the methods and equipment available. Miles had a sampling protocol, samples were sent off blind. 

For Larsen, W-L theory predicts things that aren’t seen in the experiments, with neutron-activation being the big problem.

It’s nice to know there are some grad-students on the job. It has seemed that for the most part the experiments are by old people who thus can’t be sacked for having heretical ideas. Plan B looks pretty good. We may not see the flowering of it in our lifetime, but there’s always the chance of a lucky breakthrough from one of those grad-students who has an inspired guess and is allowed to test it out, since the field is real science.

I would not advise that, frankly. However, this would be between the grad student and their advisor. The grad student’s career is on the line. I wouldn’t want to base that on a guess. On the other hand, if there is valuable information that would be gained by testing the guess, maybe. By the way, searching for the Grand Artifact imagined to be behind cold fusion reports could be valuable work.

Discussions like this are good at exposing what I don’t know. Useful but a bit public. As far as possible, though, I don’t base my opinions on belief but on data, so if I find out new data my opinions may change. Alternatively, finding out that what I thought was good data may not be (as in Piantelli’s cloud-chamber) can also change opinion. That’s maybe the benefit of that post-it wall, in that such variations in how sure we are about some data can be graded and moved around as needed.

Simon is welcome to write me privately. The Piantelli cloud-chamber data is interesting but simply not conclusive.