Subpage of JCMNS
Experiments and Methods in Cold Fusion

Proceedings of the 21st International Conference
on Condensed Matter Nuclear Science, Lory
Student Center, Colorado State University in
Fort Collins, Colorado, USA, June 03–08, 2018

source page: https://www.lenr-canr.org/acrobat/BiberianJPjcondensedzb.pdf  pp.,    MB. All pages hosted here have been compressed, see the source for full resolution if needed (or we have a copy).  All files may have undiscovered errors. Please note any problems or desired creation of a discussion page in comments.

Front matter, PrefaceTable of contents.

Videos of presentations are available (including some where no paper is in the proceedings). See  iccf-21/videos/ . * after a listing indicates a video.

J. Condensed Matter Nucl. Sci. 29 (2019) 1–547
© 2019 ISCMNS. All rights reserved. ISSN 2227-3123


Fabrication and Characterization of Palladium–Boron Alloys Used in LENR Experiments
M. Ashraf Imam* and David J. Nagel
Excess Power Measurements for Palladium–Boron Cathodes
Melvin H. Miles* and M. Ashraf Imam
Excess Heat from Palladium Deposited on Nickel
Tadahiko Mizuno and Jed Rothwell*

Overview of Pd/D Co-deposition
Pamela A. Mosier-Boss, Lawrence P. Forsley and Frank E. Gordon*

High-temperature Calorimetric Measurements of Heat for Ni–H2 Exothermic Reactions
Edward J. Beiting* and Dean Romein

Steps to Identify Main Parameters for AHE Generation in Sub-micrometric Materials: Measurements by Isoperibolic and Air-flow Calorimetry
Francesco Celani*, B. Ortenzi and A. Spallone, C. Lorenzetti, E. Purchi, S. Fiorilla, S. Cupellini, M. Nakamura, P. Boccanera and L. Notargiacomo, G. Vassallo and R. Burri

Cavitation Effects on Various Metals in D2O
Thomas N. Claytor, Roger S. Stringham*, Malcolm M. Fowler

Temperature Dependence of Excess Power in Both Electrolysis and Gas-loading Experiments
Zhan M. Dong*, Chang L. Liang, Xing Z. Li and Shu X. Zheng

Space Application of the GeNIE HybridTM Fusion–Fission Generator
Lawrence P. Forsley* and Pamela A. Mosier-Boss

Anomalous Heat Effects Induced by Metal Nano-composites and Hydrogen Gas
Yasuhiro Iwamura*, Takehiko Itoh, Jirohta Kasagi*, Akira Kitamura, Akito
Takahashi* , Koh Takahashi, Reiko Seto, Takeshi Hatano, Tatsumi Hioki*, Tomoyoshi Motohiro, Masanori Nakamura, Masanobu Uchimura, Hidekazu Takahashi, Shunsuke Sumitomo, Yuichi Furuyama, Masahiro Kishida and Hideki Matsune

Coupled Calorimetry and Resistivity Measurements, in Conjunction with an Emended and More Complete Phase Diagram of the Palladium–Isotopic Hydrogen System
M.R. Staker*

Excess Heat is Linked to Deuterium Loss in an Aqueous Nickel LANR System
Mitchell R. Swartz, Brian Ahern, Charles Haldemann and Alan Weinberg (poster)

Aqueous and Nanostructured CF/LANR Systems – Each have Two Electrically Driven Modes
Mitchell R. Swartz*

Light Hydrogen LENR in Copper Alloys
William H. McCarthy*

Nanosecond Pulse Stimulation in the Ni–H2 System
Francis Tanzella*, Robert George and Robert Godes

Anomalous Isotopic Distribution of Silver in a Palladium Cathode
Jean-Paul Biberian*

Uranium Fission Using Pd/D Co-deposition
Pamela A. Mosier-Boss*, Lawrence P. Forsley and Patrick McDaniel

Influence of Effective Microorganisms on the Activity of 137Cs in the Soil Contaminated due to the Accident on the Chernobyl NPP
A.N. Nikitin*, G.Z. Gutzeva, G.A. Leferd, I.A. Cheshyk, S. Okumoto, M. Shintani and T. Higa

Comparison of NANOR-type LANR Components to 238Pu as a Heat Source for Space Flight
Mitchell R. Swartz (no presentation at conf.)

A Simple Calculation of the Inter-nucleon Up-to-down Quark Bond and its Implications for Nuclear Binding
N.L. Bowen (poster)

Atomic Nuclei Binding Energy
Philippe Hatt*

The Enthalpy of Formation of PdH as a Function of H/Pd Atom Ratio
Edmund Storms*

Reaction of the Hydrogen with Air During the Desorption of Palladium Hydride
Jacques Ruer**, David J. French and Douglas Yuill

Development of a Sensitive Detection System for the Measurement of Trace Amounts of 4He in Deuterium, Hydrogen, and Other Gasses
Malcolm M. Fowler* and Thomas N. Claytor

Modeling and Simulation of a Gas Discharge LENR Prototype
Bob Higgins* and Dennis G. Letts

Building and Testing a High Temperature Seebeck Calorimeter
Dennis G. Letts* and Dennis J. Cravens 

Effective LENR in Weakly Ionized Gas Under the Action of Optimal Pulsed Magnetic Fields and Lightning (Theory and Experiments)
Vladimir Vysotskii and Mykhaylo Vysotskyy (poster)

Using the Method of Coherent Correlated States for Production of Nuclear Interaction of Slow Particles with Crystals and Molecules
Vladimir Vysotskii*, Mykhaylo Vysotskyy and Sergio Bartalucci

Generation and Detection of Undamped Temperature Waves at Large Distance in LENR Related Experiments
Vladimir Vysotskii*, Alla Kornilova, Timothy Krit and Sergey Gaydamaka

Electron Quasi-particle Catalysis of Nuclear Reactions
Anthony Zuppero* and Thomas J. Dolan

Calculation of the Boosted Spin–orbit Contribution to the Phonon–Nuclear Coupling Matrix Element for 181Ta
Peter L. Hagelstein* 

Statistical Mechanics Models for PdDx and PdHx Phase Diagrams with both O-site and T-site Occupation
Peter L. Hagelstein*

Investigation of Electron Mediated Nuclear Reactions
Andras Kovacs*, Dawei Wang, Dawei Wang and Pavel N. Ivanov

Resonant Surface Capture Model
Xingzhong Li*, Zhanmin Dong, Changlin Liang and Guisong Huang

Theoretical basis for Nuclear-waste Remediation with Femto-atoms and Femto-molecules
Andrew Meulenberg* and Jean-Luc Paillet

On Highly Relativistic Deep Electrons
Jean-Luc Paillet* and Andrew Meulenberg

Lattice Confinement of Hydrogen in FCC Metals for Fusion Reactions
Han H. Nee*, Arsen V. Subashiev and Fracsisco M. Prados-Estéves

A Possible Signature of Neutron Quarks – Leptons via Gluon Interaction in Solids
V.G. Plekhanov (poster)

Transmutations Involving the Di-neutron in Condensed Matter
Cheryl D. Stevenson* and John P. Davis

Electron Structure, Ultra-dense Hydrogen and Low Energy Nuclear Reactions
Antonino Oscar Di Tommaso and Giorgio Vassallo (no presentation at conf.)


Penn Jillette: Meeting Richard Feynman and the Love of Mystery

This is delicious. Feynman probably was the single greatest influence on my life. I’d turned 17 when I first sat in his physics class. I heard his famous stories (Surely You are Joking, Mr. Feynman) from him, when he visited Page House, my dorm.

And then Penn, of Penn & Teller, really fun! What a great story! Imagine being a young magician and having that happen to you!

I suspect that Penn and I could have some healthy disagreements or even deeper agreements. He’s one person I’d love to meet.

We are getting around

Some posts on Gender Desk, a blog “Tracking Wikipedia … so the barbarians don’t win”

(woman in hijab with partial face veil, middle finger raised in defiance.
Objectify this. Allahu akbar. Source: , license unknown

Abd files a lawsuit
APRIL 21, 2019

Nice, friendly, more knowledgeable — by far — than most, but the situation is complex.

Two commenters were probably defendants.

“Robert” could be Darryl L. Smith, the one whose impersonation socking caused the entire mess with the WikiMedia Foundation. His comment is highly deceptive, as usual, it is certainly the Smith party line. The current Amended Complaint explains some of this, but Darryl’s real issue with me is that I exposed what he had done, which is called “picking fights.” I typically create one account when I participate, and if I am banned (which does happen sometimes), I consider that site owners have the right, and don’t keep creating accounts. Exceptions have been quite rare and for very limited purpose. Darryl and his brother Oliver have created thousands of accounts, pursuing their attack plans.

And then his brother shows up, using his real name, Oliver D. Smith.

It’s a lolsuit. At least one of the defendants he lists doesn’t even exist and another is wrongly listed. I’m also listed for no reason.

There is clear evidence for “existence” of every defendant. Yet there have been so many lies and deceptions around the activities of the Smith brothers that it’s difficult to be sure about anything.

How would Smith know what he claims? This is the apparent fact: he and his brother know who complained, and there is a defendant named where evidence of participation in the conspiracy is thin, so he might be referring to that as “wrongful.” But one may name a defendant in a lawsuit, or even in a “lolsuit,” based on suspicion if there is any evidence at all, and there is.

As to not existing at all, there is a defendant called “Max,” who wrote about being a complainant to the WMF, over a year ago. Recently an anonymous user on the CFC wiki claimed to be this person and confessed his role (and then commented more as Max). Max was then threatened with harm. Does “Max” exist? Or is this yet another impersonation in the smoke screens laid down by the Smiths? Again, I don’t care. Max is on the list unless he decides to help clean up the mess he helped make. And if he doesn’t exist, I will have some difficulty serving him, right?

As to Oliver being listed for “no reason,” he is either brain-dead or lying. He was one of the complainants leading to the WMF ban. He bragged about it. 

And then, on Gender Desk:

Oliver D. Smith JULY 17, 2019 AT 12:39 AM

lol. The deletion of what you call the “parapsychology resource” had nothing with attacking academic freedom but the fact they’re pseudoscience. The person who wrote that junk who doesn’t want to be named isn’t even an academic (as you know). And Wikiversity deleted it for being pseudoscience.

They had no idea what they were doing.  Wikiversity hosts “educational resources,” which can study anything, excepting only certain illegal material. “Pseudoscience” was never before a deletion reason on Wikiversity, and there is, of course, a Wikipedia article on parapsychology. Parapsychology is explicitly a science, quite the same science as was involved with the founding of CSICOP, “The Committee for Scientific Investigation of Claims of the Paranormal.”

Many “scientists” — in what fields? — imagine that parapsychology involves a “belief” in some interpretation of claims.

The Wikiversity resource was rigorously neutral, it had been challenged and was confirmed by an administrator there. But there was an occasional attack on it, by those who it or part of it deleted. That was an attack on academic freedom, a fascist prohibition of the study of “forbidden topics.”

Compared to “normal disruption” on Wikipedia, this was practically trivial.

“The person” referred to was the collector of one subpage, an annotated list of sources, not the whole resource. And he may have realized that study of parapsychology (and “psychic phenomena”) is not necessary good for him. This is completely irrelevant, and that work still exists (I rescued the deleted material) and he has not asked for it to be deleted.

Wikiversity is not only for academics. It’s a public wiki, where people may study any topic they choose. That is, it was that until the Smiths attacked, having recruited some Wikipedians to kill the one place in the WMF family where there was genuine academic freedom (though Wikibooks could be close, and, in fact, Wikiversity was an offshoot of Wikibooks)..

Oliver D. Smith JULY 17, 2019 AT 12:32 AM

The defendants (all of them) he lists have said Lomax is lying and that’s not at all what happened. Obviously though he disagrees and has his own view of events. All I can say is take what Lomax says with a pinch of salt.

Again, how does Oliver know this? It’s obvious and there is plenty of evidence (quite enough to take this into discovery and trial), these people communicated and coordinated off-wiki.

“Lomax is lying” is not a statement with any specificity. Oliver has been saying this for more than a year, almost never pointing to any actual statements. It’s just a big blob of mud thrown. I have made a series of statements in the Amended Complaint (and it should get even clearer in the Second Amended Complaint, which is planned), and each of those is factually based, plus there are interpretations based on “reasonable suspicion.” To survive a motion to dismiss, the suspicion must be plausible. I affirm, in filing such a complaint, that everything in it is true “on information and belief.” What are Oliver’s statements?

He has lied over and over, and this has been covered many times and there may even be a reference to one of them here. For quite some time he claimed that all the disruption on Wikipedia, Wikiversity, and Meta was not him, it was his brother. He confirmed other aspects of the story as it was developing. And then he wrote that it had all been a lie, it was all him. And then he wrote something like maybe it was and maybe it wasn’t.

So sometimes he claims that his brother doesn’t exist, or if he does exist, he has nothing to do with the wikis. It is radically implausible, given the very obvious personality differences, but we will find out. What I care about most is that the truth emerges. And I trust the truth more than I trust myself.

(He was realizing that the heat was being turned up on his brother, who was far less well-known, and it is possible that his brother was being paid, that was one of the stories based on statements made by socks apparently Darryl. Since Oliver is on the dole in the U.K, living with parents, he would be taking the heat on himself as “judgment proof.” So that’s a motive to lie. Reality will come out, it has a way of doing that. There is a brother, it’s called “public records.” And this is no longer a wiki game, where “outing” is BAD. It is real life, where it can be necessary to name names.

Meanwhile, Oliver is being sued for defamation in the United Kingdom, and the case appears to be pretty much open and shut. He called someone who is not a pedophile a “pedophile.” He toned it down in some presentations to “pedophile defender” or “child rape apologist,” when his target was neither. And because I pointed this out, I was also called a “pedophile defender” or the like.

“No reason”? Besides being blocked as many accounts on Wikipedia, Oliver is now also formally banned (as many accounts) on RationalWiki, has many, many blocked accounts on Encyclopedia Dramatica, and many thowaway accounts on Reddit that appear to be him, from arguments, they either simply disappear or show up as [deleted], which could mean “blocked.” (I am no longer blocked on ED, that was transient). I’m not socking anywhere, though there are impersonations, one of their favorite tactics.

To my knowledge, the only defendant who has openly denied the charges in the lawsuit is Oliver. None of the others have commented publicly. So unless he is completely lying (not impossible!), he is in private communication with them. [Since this was written, JzG has made statements.]

And finally, a comment from Gender Desk herself (assuming a pronoun, if I may):

genderdesk JULY 18, 2019 AT 12:16 AM

As far as I can tell, this is about Rational Wiki and the Skeptics, and started out as a content dispute over whether pseudoscience and “original research” should be included in certain areas of Wikimedia projects.

What this was originally about and what it became are not the same.

Originally, this was not about RationalWiki at all. Nor was it really about “the skeptics,” though Darryl Smith presents himself as a skeptic. It was about a very personal attack on a student of parapsychology, who had been invited by me to work on the topic on Wikiversity, because I knew he was interested (This was partly to distract him from socking on Wikipedia, where he had been blocked long before for old behaviors.) It worked, he almost entirely refrained from editing Wikipedia, but there were a few exceptions, actually harmless. What happens when you compile sources and annotate them is that you learn. This is why students do this in real universities. That page was attributed as his work. And that is how Wikiversity allows original research. It is not presented as neutral. It’s “study.”

The Parapsychology project on Wikiversity was, over the years, occasionally attacked by single-purpose accounts, later recognizable as Darryl. (Darryl was also known as Goblin Face on Wikipedia). This time, as an SPA, Darryl filed a sock puppet investigation, but nobody was paying attention (there was really very little disruption, if any, and Darryl relied on Facebook postings, etc.)

So, as he later explained as a sock, I think it was on Meta, he had to do something. So he created sock puppets to impersonate this user, daring Wikipedians to do something to stop him, he could do whatever he wanted on Wikiversity, LOL!

So they did something, and the particular page he had been working on was deleted and he was blocked for “cross-wiki disruption.” I had not been paying attention to Wikiversity, having basically abandoned it as unsafe (even though it was much safer than Wikipedia). When I found out, I filed steward checkuser requests and the impersonation socking was confirmed. And I started looking at how obvious single-purpose accounts could create such disruption, while administrators were clueless dupes.

Starting up that study, I was intensely attacked, and many socks were globally locked. And then the RatWiki article appeared. And then the coordinated attack on the Wikiversity resource on cold fusion appeared, started by an IP. This was then repeated for the entire Parapsychology resource. The arguments can be seen in the archive.

There had been no disruption at all over cold fusion on Wikiversity, since the resource was started in 2006, until this Request for Deletion arrived in 2017, full of irrelevant arguments, a complete mess. (The resource history can be seen here. No revert warring, no conflict. Actual educational discussion.)

There had been minor disruption over Parapsychology, all easily handled. Until this.

The attack was actually personal, on me and my work (I created the Parapsychology resource in response to requests from scientists, and to show how a resource on a controversial topic could be neutral, and still academically free. If interested, I suggest reading the discussions.)

“Original research” was always explicitly allowed on Wikiversity, as long as it was disclosed as such. There is a huge difference between activity in a university and activity in creating an encyclopedia. The force for deletion was entirely from non-Wikiversitans.

Michael Umbricht, who acknowledged receiving complaints by email, invented an entirely new reason for deletion, never seen before or since. From his behavior, he intervened precisely to support the revenge effort from Darryl, who had recruited Guy Chapman (JzG) and Joshua P. Schroeder (ජපස), who were long-term Wikipedia enemies of everything fringe or “pseudoscientific.”

Umbricht then extended deletion to a large number of pages in my user space, deleting them without warning — totally violating deletion policy. These pages had been used for many purposes and some were historically important. But they were easily identifiable as “Abd’s work,” which he had likely promised to delete. Deletions without notice, for legal content, was unheard of on Wikiversity.

To recover these pages required downloading very large Wikiversity XML dumps and writing a program to extract pages with a prefix from it. (I’ve been unable to find such a utility that I could use).

The actual motivation here was not really a content dispute. It was about revenge. The RatWiki article was about revenge, and there are many examples where the Smiths did that, going back long before I was involved.

They learned how to manipulate administrators, and the WMF fell for it.

Gender Desk has posted another page about the lawsuit:

Lomax v. WMF: Abd names names

Lomax v. WMF: Abd names names
JUNE 28, 2019

Thanks, Gender Desk, it all works together. One point that can be missed. I did have a “Count 4” in the Amended Complaint, asking to be unbanned. But I am abandoning that, for a number of reasons, not the least of which is that this would be of very little value to me personally, and by the TOU, very limited recovery ($1000 max) for damages. It is not worth the effort for a single person. It could be a class action, but I’m not holding my breath. It would be difficult, because of how the CDA Section 230 has been interpreted, but not impossible. Not my call. I’m going for what is easy. After all, Not a Lawyer.

The rest of the suit is about defamation and conspiracy to harass and defame, not their right to ban.

Is cold fusion Natural?

A few days ago, the internet lit up with news of a new paper on cold fusion in Nature.

Revisiting the cold case of cold fusion

Google has been funding cold fusion research for the last several years. This project, though, was not publicized. The CMNS (Condensed Matter Nuclear Science) research community in general knew little about it, though there were hints and leaks. There is a National Geographic page that tells the story.

Cold fusion remains elusive—but these scientists may revive the quest

However, I’m going to start this series by revisiting an old editorial, 29 March, 1990, by David Lindley, then an associate editor of Nature. He wrote:

The embarrassment of cold fusion

This is best known for its last words:

Would a measure of unrestrained mockery, even a little unqualified vituperation, have speeded cold fusion’s demise?

This editorial was rife with the characteristics of pseudoskepticism, and even disparages real skepticism, essential to science. Real skepticism is open-minded, merely not easily convinced about “extraordinary claims.” But it does not reject those claims based on existing theory, because it is also skeptical that existing theory is universally true. (It is not so open-minded that we find brains on the floor. It will point out the obvious, but it is not a “believer” position.)

This was a year after the announcement by Fleischmann and Pons. By that time, there had been some reports and confirmations of nuclear effects, but it was all still very unsettled. However, Lindley writes as if cold fusion were preposterous, blatantly impossible.

But . . . what is “cold fusion?”

Pons and Fleischmann had actually claimed an “unknown nuclear reaction,” and their claim of “nuclear” was reasonable if they had made no major errors in their calorimetry, and they believed they had seen radiation (which was apparently artifact, error.)

Nevertheless, what they had seen, clear to them, was anomalous heat, at levels that they, as highly skilled chemists, could not explain with chemistry. That would remain a mystery and it still is a mystery, though aspects are now understood. It is not what Lindley imagined “cold fusion” would be, in many ways.

It was not until 1991 that Miles announced that he had found helium correlated with anomalous heat, which was stunning, as Huizenga noted. If this was confirmed, Huizenga wrote, it would explain one of the major mysteries of cold fusion, the nuclear product. However, Huizenga expected that this would not be confirmed, because “no gammas.”

And this shows how mind-locked Huizenga and many at the time were. Gammas are found with two-deuteron fusion, very strong gammas, if helium is the product, but two-deuteron fusion only rarely produces helium, and is a very well-understood reaction (though not entirely, and part of the new paper explores that).

If helium is the main product — it seems obvious in hindsight — the reaction is not two-deuteron fusion! What is it?

Lindley looks at some theories, but simply assumes, as Huizenga, that if this is fusion, it is fusion of two deuterons. That assumption was common, including probably with Pons and Fleischmann and others who supported “cold fusion.”

There is another reaction which may be possible that does not generate that very hot gamma. Cold fusion is taking place in condensed matter, not in a plasma, so more complex structures, including electrons, are possible. Lindley does consider Bose-Einstein Condensates, but only with two deuterons. Not with two deuterium molecules. If two molecules were to fuse, the product expected would be an isotope of beryllium, 4Be8, which will decay into two helium nuclei (2He4). No very hot gamma. While there are other problems to be solved with this theory, I won’t go into them, this may well be on the right track to the actual mechanism behind cold fusion.

But all this focus on theory lost the most important principle in science: Experiment is King, not Theory. The first question to have properly asked (and some did ask it) was not, “Is this fusion?”, but “Is there a real heat effect?” And then, what conditions cause the effect, what are associated and especially correlated effects, what data can we collect?

By focusing on fusion, and looking for “fusion products,” meaning neutrons and tritium, and then concluding, when these were not found, that the heat must be an error, scientists fooled themselves. And where they were considered experts, they also fooled others who trusted them.

Truly ironic is what Lindley remembered before making the vituperation comment:

Perhaps science has become too polite. Lord Kelvin dismissed the whole of geology because his calculations proved that the Sun could be no more than a few million years old; Ernest Rutherford is still remembered for his declaration that talk of practical atomic energy was “moonshine” — but the stature of neither man has been noticeably diminished by their errors, which were as magnificent as their achievements.  Kelvin and Rutherford had a common-sense confidence in the robustness of their judgements which the critics of cold fusion conspicuously lacked.

This is odd, looking at it now, knowing the history of cold fusion, and the very early comment of Steve Koonin at the APS conference in Baltimore, May, 1989:

My conclusion, based on my experience, my knowledge of nuclear physics, and my intuition, is that the experiments are just wrong. And that we’re suffering from the incompetence and perhaps delusion of Drs. Pons and Fleischmann.

It has been known for many years that the famous replication failures, that led to conclusions like that of Koonin, were based on a failure to set up the necessary conditions for the effect to be seen. That work is part of the corpus of evidence that is accepted as demonstrating how not to see the Fleischmann-Pons Heat Effect. The negative work was not experimentally “wrong.” They correctly reported that under the conditions they set up, no significant excess heat was observed, nor any nuclear product.

Lewis et al (Nature, 1989) reached a maximum “stoichiometry” (D/Pd ratio) of 80%, and there is no report of the FPHE below roughly 90% at initiation. The current report in Nature is very similar, except that the new authors are quite aware that they did not reach adequate loading, hence their call for more research.

Even reaching adequate loading is not enough. In SRI P14, a Fleischmann-Pons type cell was loaded for months to high loading, and a current protocol (ramping current up and then down) was run, while measuring “excess heat.” The same protocol was run three times. The first two times, nothing happened except a little more noise. The third time, there was clear excess heat, unmistakeable. All other conditions were the same. (And there was a hydrogen control in series, which shows no excess heat in all three runs.)

Something must happen to the material to change it. Loading and deloading palladium with deuterium puts it under stress, it can crack, and the latest thinking is that a new phase of the metal can form at high loading plus stress: super abundant vacancy (SAV) material, which can also load to a higher ratio.

Not all palladium is the same. Nobody has yet found a way to reliably create material that works immediately, or even that works at all. Some protocols are better than others, though, some show excess heat most of the time, but highly variable in amount. The evidence is strong that that the famous unreliability is due to not-understood material conditions.

Add to this the difficulties of calorimetry and the possibility of the file-drawer effect, and we have the Scientific Fiasco of the Century (Huizenga).

What is constant, though, where it has been measured, is that helium is found commensurate with anomalous heat.

That is so strong as evidence for the reality of the reaction that a jury could be convinced in a civil case with it, and possibly even in a criminal case.

I can think of no way that the helium could be consistently correlated with heat, across different protocols and conditions, in many experiments, other than being produced by the same reaction, nor have I seen any proposed that are consistent with the experimental conditions.

Heat is not going to make helium and helium is not going to make heat, if the heat is artifact (or even if not!) and if the helium were leakage or error, it would not be clearly correlated with heat, and the ratio would not so nicely approach that very special value, 23.8 MeV/4He, which is the thermodynamically necessary ratio for any reaction that converts deuterium to helium, regardless of mechanism, as long as there is no radiation loss, and there apparently is not anything significant.

I will examine the Lindley analysis in detail on a page, Lindley 1989.

This series will continue with Cold fusion is in our geography now.


Barry Kort

Barry Kort, as Wikiversity user Caprice, discussed cold fusion with Abd Lomax (and a few others) in 2010. Because of the deletion of the cold fusion resource on Wikiversity, even though it was restored on the CFC wiki, it’s a bit tricky to find his contributions, they might extend into 2011. (User names are in page history, but the account does not exist on CFCwiki.)

The occasion for this study was an exchange on Encyc. There was also commentary on Talk:Cold fusion there.

Here is a list of the Wikiversity conversations:

Analysis of AC Burst Noise in Cold Fusion Electrolytic Cells

Subpage of barry-kort/

From Barry Kort undated page, first archived August 1, 2015.

Forgive them, Thevenin, for they know not how to reckon AC transient power.

“The worst error you can make is an unexamined assumption.” ~Jed Rothwell, Lessons from Cold Fusion

About a year after CBS 60 Minutes aired their episode on Cold Fusion back in 2009, I followed up with Rob Duncan to explore Richard Garwin’s thesis that McKubre was measuring the input electric power incorrectly.

It turns out that McKubre was reckoning only the DC power going into his cells, and assuming (for arcane technical reasons) there could not be any AC power going in, and therefore he didn’t need to measure or include any AC power term in his energy budget model.

McKubre justified his fateful assumption thusly:

Under current control, the cell voltage frequently was observed to fluctuate significantly, particularly at high current densities where the presence of large deuterium (or hydrogen) and oxygen bubbles disrupted the electrolyte continuity. By providing the cell current from a source that is sensibly immune to noise and level fluctuations, the current operates on the cell voltage (or resistance) as a scalar. Hence, as long as the voltage noise or resistance fluctuations are random, no unmeasured RMS heating can result under constant current control, provided that the average voltage is measured accurately.

Together with several other people, I helped work out a model for the omitted transient AC power term in McKubre’s experimental design. Our model showed that there was measurable and significant AC power, arising from the fluctuations in ohmic resistance as bubbles formed and sloughed off the surface of the palladium electrodes. Our model jibed with both the qualitative and quantitative evidence from McKubre’s reports:

1) McKubre (and others) noted that the excess heat only appeared after the palladium lattice was fully loaded. And that’s precisely when the Faradaic current no longer charges up the lattice, but begins producing gas bubbles on the surfaces of the electrodes.

2) The excess heat in McKubre’s cells was only apparent, significant, and sizable when the Faradaic drive current was elevated to dramatically high levels, thereby increasing the rate at which bubbles were forming and sloughing off the electrodes.

3) The effect was enhanced if the surface of the electrodes was rough rather than polished smooth, so that larger bubbles could form and cling to the rough surface before sloughing off, thereby alternately occluding and exposing somewhat larger fractions of surface area for each bubble.
The time-varying resistance arising from the bubbles forming and sloughing off the surface of the electrodes — after the cell was fully loaded, enhanced by elevated Faradaic drive currents and further enhanced by a rough electrode surface — produced measurable and significant AC noise power into the energy budget model that went as the square of the magnitude of the fluctuations in the cell resistance.

Specifically, if the ohmic resistance is fluctuating R±r, then PAC ≈ α²PDC, where α = r/R.

To a first approximation, a 17% fluctuation in resistance would nominally produce a 3% increase in power, over and above the baseline DC power term. Garwin and Lewis had found that McKubre’s cells were producing about 3% more heat than could be accounted for with his energy measurements, where McKubre was reckoning only the DC power going into his cells, and (incorrectly) assuming there was no transient AC power that needed to be measured or included in his energy budget model.

I suggest slapping an audio VU meter across McKubre’s cell to measure the AC burst noise from the fluctuating resistance. Alternatively use one of McKubre’s constant current power supplies to drive an old style desk telephone with a carbon button microphone. I predict the handset will still function: if you blow into the mouthpiece, you’ll hear it in the earpiece, thereby proving the reality of an AC audio signal riding on top of the baseline DC current.

Transient AC Power and Wavefronts of Traveling Waves

Let’s go back to McKubre’s fateful assumption. McKubre writes:

Under current control, the cell voltage frequently was observed to fluctuate significantly, particularly at high current densities where the presence of large deuterium (or hydrogen) and oxygen bubbles disrupted the electrolyte continuity. By providing the cell current from a source that is sensibly immune to noise and level fluctuations, the current operates on the cell voltage (or resistance) as a scalar. Hence, as long as the voltage noise or resistance fluctuations are random, no unmeasured RMS heating can result under constant current control, provided that the average voltage is measured accurately.

Now let’s parse that, one sentence at a time.

1) The cell voltage frequently was observed to fluctuate significantly, particularly at high current densities where the presence of large deuterium (or hydrogen) and oxygen bubbles disrupted the electrolyte continuity.

So we begin by observing that there is fluctuating resistance, and an associated fluctuation in cell voltage. So far so good.

2) By providing the cell current from a source that is sensibly immune to noise and level fluctuations, the current operates on the cell voltage (or resistance) as a scalar.

This is the key part of the unexamined assumption that needs to be carefully examined.

3) Hence, as long as the voltage noise or resistance fluctuations are random, no unmeasured RMS heating can result under constant current control, provided that the average voltage is measured accurately.

But wait! When the power supply is slewing (meaning the voltage is either rising or falling at the slew rate), the voltage pulse and the associated current pulse are in phase. In fact they amount to a transient wave front propagating from the power supply into the cell. There is real power in a transient pulse, which must be computed by the application of appropriate mathematical models for the transient AC power in the wavefront of a traveling wave. The appropriate mathematics for this can be found in the annals of telephony (among other places).

If the slew rate is fast (e.g. 1.25 A/μsec in constant current mode and 1 .0 V/μsec in constant voltage mode), then the Nyquist Sampling Rate to capture this brief interval when the voltage and current pulses are in phase has to be at an even higher frequency. Otherwise, the power in the AC transient will never be seen, never be measured, and never be reckoned in the energy budget model.

Note, also, that the transient AC power is independent of the actual slew rate. The same amount of transient AC power is injected whether the slew rate is fast or slow.

Fourier Analysis

Another way to model it is to use Fourier Analysis. Assume there is a sinusoidally varying load resistance going as R + r sin ωt. Then to obtain a true constant current, the active regulated power supply has to meet the rising and falling resistance. So, for example, if the power supply is trying to maintain a constant 1 A DC current (with no AC), the power supply has to produce a matching voltage given by 1 A × (R + r sin ωt) Ω. If the power supply can do this with no signal processing delay, and if there is no signal propagation delay in the medium between the power supply and the load, then this will indeed produce a perfect constant current and there will be no AC power.

But active power supplies have a non-zero signal processing time (given by the slew rate). Moreover, there is non-zero signal propagation delay in the circuit between the power supply and the load. Let this total round-trip delay be τ. Then the voltage produced by the power supply and delivered to the load will be 1 A × (R + r sin ω(t-τ)) Ω. The phase shift is given by φ = ωτ. The worst case is when φ = ωτ = π, in which case the AC power injected by the hapless power supply is PAC = [α²/sqrt(1-α²)] PDC, where α = r/R. The general formula, as a function of phase shift, φ = ωτ, for any harmonic, ω, in the Fourier Series is

PAC(ω) = ½[1 – cos(φ)] [α²/sqrt(1-α²)] PDC = ½[1 – cos(ωτ)] [α²/sqrt(1-α²)] PDC

where α = r/R and τ is the round trip propagation delay and signal processing delay at harmonic frequency, ω, in the Fourier Series for the time-varying resistance.

So when ω ≈ π/τ, there will be significant AC power that (to a simplified approximation for r ≪ R) goes as ½α²PDC, where α = r/R. If the fluctuating resistance arises from the formation of bubbles on the electrodes, then there will be very high-frequency components from the perturbation in load as bubbles form and slough off the surface of the electrodes. Note also that if the magnitude of the fluctuation, r, is very large (e.g. 80% of R), then the injected AC power can exceed the DC power.

Finally, note that the propagation delay isn’t even an exact constant at any given frequency when the conducting medium is an electrolyte[1]. When the charge carriers are electrons, the propagation speed is about one-tenth the speed of light in a vacuum. But in an electrolyte solution with H⁺ or D⁺ ions (as well as other species of charge carriers), the portion of the signal carried by those ions of molecular weight, n, propagate more slowly, going approximately as C/(18360×n). The effect is to render τ to be an exponential distribution with the leading edge of a pulse traveling in about 0.1 μs and the trailing tail lagging by about 500 μs, depending on the mix of species of charge carriers in the electrolyte. It’s worse in heavy water than light water because Deuterium ions have twice the atomic weight of Hydrogen ions, and so they travel at half the speed of protons.

[1] Horace Heffner, “10-meter Electrolytic Cell Experiment,” April 1996.

Edward Dutton

DRAFT. if this is being read on an archive site, be sure to check the original page for updates.

Subpage of Rational-wiki

Edward Dutton created by Octo (Oliver D. Smith). Continued development by “SimonandSimon,” likely the same user.

This study was attacked before it was even started.  See the subpage, Reddit.

The core of fascism

I have been struck by news of late demonstrating what I have called “medical fascism.” The core of fascism, as I am coming to see it, is a collective conviction combined with intolerance of divergent views. Benito Mussolini was the stated author of The Doctrine of Fascism, co-written with Giovanni Gentile, a fascist philosopher.  From the copy published by the World Future Fund, allegedly copied directly from an official Fascist government publication of 1935, Fascism Doctrine and Institutions, by Benito Mussolini [my emphasis]

A party governing a nation “totalitarianly” is a new departure in history. There are no points of reference nor of comparison. From beneath the ruins of liberal, socialist, and democratic doctrines, Fascism extracts those elements which are still vital. It preserves what may be described as “the acquired facts” of history; it rejects all else. That is to say, it rejects the idea of a doctrine suited to all times and to all people. Granted that the XIXth century was the century of socialism, liberalism, democracy, this does not mean that the XXth century must also be the century of socialism, liberalism, democracy. Political doctrines pass; nations remain. We are free to believe that this is the century of authority, a century tending to the ” right “, a Fascist century. If the XIXth century was the century of the individual (liberalism implies individualism) we are free to believe that this is the “collective” century, and therefore the century of the State.

However, this source has from Fascism Doctrine and Institutions:

. . . this will be a century of authority. [no mention of the “right.”]

And an “official translation” published in the Political Quarterly, apparently 1933, has:

. . . this will be a century of authority, a century of the left, a century of Fascism.

Which is it, the “left” or the “right”?

My answer at this point is that fascism is opportunistically left or right, it is both and neither, it may be populist, thus it may even be “democratic” by some definitions (particularly majoritarian or strongest-faction forms of democracy), but key is that it is always authoritarian, intolerant of dissent, willing to use coercive power to enforce its vision of “truth” and “morality,” and Mussolini openly endorsed this.

Fascism may then be racist in some contexts, and anti-racist in others.

And it may be apparently skeptical in one context and pseudoskeptical, proclaiming the truth of “science” vs. “pseudoscience,” in another.

(The scientific method does not generate certainty, only, at best, probability, and there are many situations where “scientific consensus,” i.e., the apparent consensus of experts, was not formed through diligent application of scientific methods, but rather politically and socially; this “collective view” being enforced, with deviation sanctioned.

That is scientific fascism, pretending to “collective knowledge,” with all else being termed, not skepticism, but “denialism.”

The common thread in fascism is certainty, where the truth of some proposition is not to be denied, where it is not allowed under penalty of the strongest opprobrium or worse.

As well, movements and positions create their opposites that are just as convinced and certain and willing to censure and condemn opposing opinions.

I have recently seen many stories in the media about what might be called “anti-vaxx hysteria.” Those who suggest that there may be some risks or negative consequences from vaccination are being called “murderers.”

And then some anti-vaxxers are calling doctors who support vaccination the same.

Both movements are medical fascism, the “pro-vaccine” position commonly refusing to allow any possible critique of vaccination, and the anti-vaxx position claiming that all support for vaccination is coming from Big Pharma shills, with government in their pocket, uncaring about continued study of complications and individual rights.

So from the Guardian, New York county bans unvaccinated children from public spaces amid measles outbreak.

It is the latest region of the US to take drastic steps to counter the virus, with the spike in measles cases leading to concerns that anti-vaccine parents may be putting their children at risk. . . .

The state of emergency in Rockland county, which comes into effect at midnight on Tuesday, bars anyone under 18 who is not vaccinated against measles from public places for 30 days. . . .

. . . the county had traced the outbreak to seven “unvaccinated travelers” who had visited Rockland in 2018. The county has had 48 cases of measles in 2019 alone, according to a spokesman.

From 1 January to 21 March of this year 314 cases of measles were confirmed in 15 different states, according to the CDC. There were 372 cases in 2018, more than triple the number the previous year. The rise has been linked to “anti-vaxxers”, activists who claim, incorrectly but loudly, that vaccines can have negative effects.

Can vaccines have negative effects? The Guardian states as if it were fact that this is “incorrect,” yet that extreme position is preposterous.

The issue is not the existence of negative effects, but the rate. I had a friend die from polio when his daughter was given Sabin oral vaccine in about 1978 or so. By effectively claiming that anti-vaxxers are merely “loud,” and essentially liars and murderers — and I have seen that — authorities are taking a fascist approach to collective welfare, even if they are “right,” i.e., that the benefits of vaccination outweigh the harms.

That denial of any value to the “other side” is typical of fascist propaganda. I had all my children vaccinated and was vaccinated as appropriate for travel when I went to China and Ethiopia to adopt. But I chose to do that. If someone had told me that it was required or else I’d be charged with a criminal offense, I might reconsider! If it is necessary to enforce good sense with criminal penalties, maybe it is not good sense!

And in the other direction, but also from the Guardian:

Anti-vaxx ‘mobs’: doctors face harassment campaigns on Facebook

When the naturopath Elias Kass testified before a Washington state senate committee on 20 February with a baby on his chest and a pacifier in his hand, he knew that his arguments would be unpopular with the anti-vaccine activists in the room. Amid a measles outbreak that has infected 66 people so far, legislators were considering a bill to eliminate personal and philosophical exemptions for childhood vaccinations, and Kass was one of several practitioners to speak in support of the measure.

It astonishes me that good people support fascism, but it happens. I’m sure that Kass is sincere, but he is encouraging removing the right of choice over health care decisions from parents, instead assigning it to the state. Yet in a mature society, he would have the right to express his opinion without the kind of harassment he encountered.

Kass faced some anger in the hallway after the hearing, he said, with one person calling him “a disgusting liar”. But it wasn’t until several hours later that “the shit hit the fan”. That’s when Kass realized that his Facebook page was being flooded with one-star reviews calling him everything from a “disgrace” and a “pedophile” to a “Nazi pharma shill” and “scumbag shilling for infanticide”.

Now, the comparison here may be unfair. A social movement like anti-vaxx has no direct control over what “supporters” do. And I have seen impersonation trolling, where someone pretends the opposite of their own position, with extreme expression, intending to discredit those of that view as fanatics. (I.e., there is no proof that those harassers were actually anti-vaxxers. But there may be anti-vaxx organizers that may have responsibility, I have not investigated this.)

Impersonation can work because people often don’t read carefully and don’t realize that anonymous comments on the web are just that: anonymous, and not to be trusted ever.

(Edits on RationalWiki and Wikipedia, appearing to be from me, aren’t — or in the case of RatWiki, the vast majority are not. I don’t vandalize, I don’t spam, and I don’t harass and make legal threats with wiki edits. I might by certified mail.)

Yet structures have been created where anonymous positions can dominate. Wikipedia is a clear example, in fact. When it works, it’s great, but it can fail spectacularly.

The enemies of humanity here are two old allies: contempt and hatred.

Both poison human freedom, and “antifascism” can be just as full of contempt and hatred as “fascism.”

The vaccine skeptics, I’ll call them, point to an alleged lack of adequate testing of vaccines, claiming that drug companies were given exemptions in the public interest, and that kind of story has been all too common in the history of science and public health.

When dietary guidelines blaming dietary fat for heart disease were adopted and promoted, it was known that the science was not adequate to establish that as medical fact, but it seemed likely and we couldn’t wait, millions could die!

We did not actually know that making those recommendations would save lives, overall, and from what I’ve seen, so far, it seems quite possible that, instead, there were millions of premature deaths. Bad Science can do a lot of harm!

(Murderers? No, not unless they knew, or clearly should have known. But where and when do we become responsible for ignorance?)

How can we both protect public health and act to avoid harm? Any time millions of people are subjected to a medical procedure, there is risk of harm, the claim of “harmless” was crazy — yet there it was, in a major newspaper, as if fact.

It’s obvious to me that we need more research, and we need ongoing monitoring of all major health programs. Who is going to pay for this? We have a system that expects drug companies to do the research, and a public that then often blames them for being greedy. But we set that up — or relied on it and allow it to continue! It is clear that we need to fund research, but we don’t necessarily have trustworthy institutions to manage this. The nonprofits have themselves been corrupted — or appear to have been corrupted — by corporate support. We need to directly support and supervise collective institutions, or at least set up and fund watchdogs.

Instead, our habit is to blame others, rather than taking responsibility, by recognizing what is missing, and supplying it.

To declare an antifascist manifesto here, the future belongs to collective freedom, that creates cooperation and non-coercive, voluntary  coordination.

Saturated fat, cholesterol and heart health

Under construction, list of sources:

Towards a Paradigm Shift in Cholesterol Treatment

A Re-Examination of the Cholesterol Issue in Japan

Annals of Nutrition and Metabolism, Vol. 66, Suppl. 4, 2015, prefacebody

From the Introduction:

High cholesterol levels are recognized as a major cause of atherosclerosis. However, for more than half a century some have challenged this notion. But which side is correct, and why can’t we come to a definitive conclusion after all this time and with more and more scientific data available? We believe the answer is very simple: for the side defending this so-called cholesterol theory, the  amount of money at stake is too much to lose the fight.
The issue of cholesterol is one of the biggest issues in medicine where the law of economy governs. Moreover, advocates of the theory take the notion to be a simple, irrefutable ‘fact’ and self-explanatory. They may well think that those who argue against the cholesterol theory—actually, the cholesterol “hypothesis’—are mere eccentrics. We, as those on the side opposing the hypothesis, understand their argument very well. Indeed, the first author of this supplementary issue (TH) had been a very strong believer and advocate of the cholesterol hypothesis up until a couple of years after the Scandinavian Simvastatin Survival Study (4S) reported the benefits of statin therapy in The Lancet in 1994. To be honest with the readers, he used to persuade people with high cholesterol levels to take statins. He even gave a talk or two to general physicians promoting the benefits of statins. Terrible, unforgivable 
mistakes given what we came to know and clearly know now.
In this supplementary issue, we explore the background to the cholesterol hypothesis utilizing data obtained mainly from Japan—the country where anti-cholesterol theory campaigns can be conducted more easily than in any other countries. […]

Saturated Fat Consumption and Risk of Coronary Heart Disease and Ischemic Stroke: A Science Update

Ann Nutr Metab. 2017 Apr; 70(1): 26–33. PDF

At a workshop to update the science linking saturated fatty acid (SAFA) consumption with the risk of coronary heart disease (CHD) and ischemic stroke, invited participants presented data on the consumption and bioavailability of SAFA and their functions in the body and food technology. Epidemiological methods and outcomes were related to the association between SAFA consumption and disease events and mortality. Participants reviewed the effects of SAFA on CHD, causal risk factors, and surrogate risk markers. Higher intakes of SAFA were not associated with higher risks of CHD or stroke apparently, but studies did not take macronutrient replacement into account. Replacing SAFA by cis-polyunsaturated fatty acids was associated with significant CHD risk reduction, which was confirmed by randomized controlled trials. SAFA reduction had little direct effect on stroke risk. Cohort studies suggest that the food matrix and source of SAFA have important health effects.

Cited by:


Special Place in Hell

After having written what is below the second headline, I found another article, same author, same day:  The deadly propaganda of the statin deniers: The drugs DO protect you from heart attacks but as this devastating investigation reveals thousands are refusing them

That article continues, at the bottom, with the screed I covered below, but the screed did not reference the main article, explaining the oddities I reported below. This article, on the face, is better, actually giving more evidence, but misrepresenting many significant facts. I’ll cover that in Deadly Propaganda, a parallel page not written yet.


There is a special place in hell for the doctors who claim statins don’t work, says BARNEY CALMAN


PUBLISHED: 17:21 EST, 2 March 2019

Statistics are one thing. But it’s hard to argue against the dangers of stopping taking statins when they’re staring you in the face.

The dangers were not staring him in the face, and one doesn’t know if it is “hard” to argue against the dangers of stopping if one does not look at evidence, all of it, instead of an anecdote that actually tells us very little but what is already accepted by all sides. But he doesn’t look at all sides, obviously. This is typical of a yellow journalist, and so I was not surprised to see, in the Wikipedia article on the Daily Mail,  this:

The Daily Mail has been widely criticised for its unreliability, as well as printing of sensationalist and inaccurate scare stories of science and medical research,[12][13][14][15][16] and for copyright violations.[17]

However, I know this about Wikipedia, from long experience. Unless there is a notable source  not only criticizing, but asserting that criticism is “wide,” in which case, as an interpretation, this would normally be attributed in the text, “according to,” not merely in a reference note — unless, of course — this was itself widely known, being found in many neutral sources, that statement is an example of Original Research being allowed to creep into Wikepedia articles. Nevertheless, I’ve notice the Mail being a sensationalist publication before, and I looked at the sources a little. They were good enough to allow that text as a first approximation, but I did not read all of them. The sources were the The Guardian, citing Wikipedia itself, which rejected the Daily Mail as “reliable source,” The New Yorker, Forbes, and more, getting close to fact. The Guardian article is remarkable for its reasonably correct understanding of Wikipedia process, which is relatively rare. This article on cancer articles in the Daily Mail is hilarious, and, unfortunately, right on, and, also unfortunately, the Guardian may itself have gone downhill, I’ve seen a number of examples.

As to the Mail, this is a brilliant example. The headline and the lead shout “yellow journalism” to me. He starts with what he actually saw (which is great, in itself, a human story), but he has already telegraphed what he thinks it means, and the interpretation is an easy, casual one, ignoring the actual science of the field.

Last week, I met 49-year-old Colin Worthing as he recovered in his hospital bed following a heart attack in the early hours of Tuesday. He had been prescribed cholesterol-lowering tablets ten years ago but quit them – without any medical advice – having ‘heard they don’t really work’.

All sane medical advice is against quitting a prescribed medication without consultation. He did, based on his own casual, uncareful interpretation of what he had “heard.” Statins do work, certainly to lower cholesterol, but what effect do they have on heart health, what are the side effects, and what alternatives are there? Nobody, again nobody sane again, will suggest stopping any medication without at least having a conversation with a medical practictioner, and if one doesn’t believe the practitioner, then getting a second opinion. Instead, he stuck his head in the sand, without knowledge, just depending on rumor — but also on his feelings, which now he rejects. But he is still ignorant, as we will see.

Colin suffered his first heart attack in 2009, with little warning. ‘It was a shock as I’d felt well otherwise,’ he said. ‘Later I was told I had high blood pressure and high cholesterol. My mother has heart problems, so I think it runs in my family.’

First heart attacks are commonly like that. He says “little warning.” He didn’t already know that he had high blood pressure and high cholesterol? This is someone who neglects normal routine medical care. That is high-risk, at least for many.

He was prescribed statins and blood- pressure-lowering medication. ‘I took them to start with, but I felt lethargic.

There is a high probability here that he was experiencing a known statin side-effect. It’s quite dangerous, actually, if ignored. He sensed that it was due to the statin, but did not consult with his practitioner as to alternatives. There are alternative recommendations with higher effect on cardiac risk, with fewer side effects, but he shows no sign of being aware of them. So, this is known: there is an increased death rate from “non-compliers” with statin prescriptions, but that could easily be because non-compliers may have poor health in general, or at least poor health practices. The increase, by the way, is not large.

I was always hearing on the radio that statins didn’t really work, and drug companies were just trying to make money by getting us all on tablets. You do start think there’s no smoke without fire.’

Drug companies are trying to make money? Who knew? To think, I always thought they were charities, out to help people with no regard for profit. Not. This was irrelevant nonsense, not a reason to stop statins. There is a fire, in fact, but he has not recognized, not yet, the true source of danger to himself. Instead, he just got knocked upside the heat, a warning that he’s been running blind without a clue, and his immediate reaction is not to look for the cause in himself, it is in those nasty stupid critics.

If someone says, on the radio, that “statins don’t work,” they are being misleading. The truth is far more complex, and, in fact, still controversial. The real question is about real risk vs. relative risk and real options. Comparing a statin with “doing nothing” might actually save one’s life, in some cases, but this is not a sane choice, if one is actually at risk. Instead of researching the issue himself, he was passive, listening to the radio, and doing nothing positive for his health, nothing reported. He had high cholesterol and high blood pressure, and there is no sign that he continued measuring these things, that he made what might be advisable changes to his diet, that he started an exercise program, universally recommended for people with a risk of heart attack, that he had diagnostic tests, like stress tests, not even measurement of C-reactive protein, which is a better risk predictor than cholesterol, none of that.

In 2013 he decided to stop all medication. ‘I wrote to my GP saying I no longer needed my repeat prescription, and never heard any more,’ he says.

The GP left it in his hands, obviously not having educated him. Common. But the GP is not being blamed here for not responding, though this was an obvious failure. Instead, these events are being used to blame doctors and scientists and others who are skeptical about the benefits of statins, as if his case proves something.

Over the next five years he felt well, ‘although I suppose I was stressed with work, and I did put on quite a bit of weight’.

In other words, he had two clear risk factors (stress and major weight gain), more predictive of heart attack than cholesterol. He did nothing about it, because he “felt well.” And, in a way, he was well, but at risk, and ignoring the risk, because, after all, heart disease runs in his family, and he’s going to die, and he doesn’t want to think about it, doesn’t want to go to a doctor to hear bad news, which is what he expects, my guess. He is actually a good argument against the head-in-the-sand approach to self-care. Taking statins or not taking them is a choice that is wisely made with informed consent, so he had a choice: either trust his GP blindly, or ask his GP to educate him, ask his GP about what he is hearing, ask his GP about risks (not just “risk factors”), and keep in communication, or believe the conspiracy theory. He chose to believe that theory, which was actually irrelevant. Statins have effects, they “work,” but how well and for whom. It is obvious if one becomes informed: Not everyone is benefited, and it is possible some are harmed. How many? Informed consent would require that he do much more than passively take medicine or decide to quit based on rumors. It would require him to take responsibility for his choices. But in spite of a second heart attack, he still has not done that. But it’s soon after that additional warning, and it is possible that he will wake up and realize that his biggest enemy is his own ignorance and lack of attention to his health.

And then, at about 1am on Tuesday, he woke feeling clammy, with a familiar tightness in his chest. ‘I knew it was a heart attack, and called 999.’

Right. That, however, is not what I would do. Because I’ve been paying attention, even though I have never had a heart attack, I carry a small vial of nitroglycerin tablets with me, I would take a nitroglycerin, which is very fast-acting, and if the symptoms disappeared, I’d make an appointment for a consultation. If the symptoms did not disappear, and in 15 minutes, I would take another dose. If they did not disappear within 15 minutes, I would call 911 and take a third dose. I’ve been told that if the symptoms are going when the paramedics arrive, I can decline transport. Not being in communication with his doctor, he had no clue about any of this.

(But if the symptoms were severe enough, I would call 911 at the outset. Again, because I have been in cardiac rehab, I am sensitive to the mildest angina, but it has never been strong enough to take one tablet.)

Colin was rushed to hospital where he had surgery to insert a stent which will keep blood flowing through his cardiac arteries while he awaits a full heart bypass operation. His consultant at Hammersmith Hospital, London, Dr Rasha Al-Lamee, said: ‘We regularly see patients who, like Colin, have stopped taking statins because they believe the myth that they don’t do any good. In fact, he’s one of the lucky ones. He’s alive.

How did the author find this patient? It’s rather obvious. He was writing a story about statin denialism and the terrible harm it causes, over which there have been many scare stories. So he reached out for a case, and was supplied one. But was that heart attacked caused by stopping statins?

From this story, he was one who experienced a statin side effect, and had he continued without addressing the problems, he might have died from something other than a heart attack. Statin side-effects can be serious, especially if they cause reduced exercise.

‘There will be numerous reasons his heart disease progressed so far, but one of the factors will be because he stopped taking statins.’

That’s true, there will be numerous reasons. A “factor,” which must refer to a “risk factor” is here being confused with a cause. His stopping statins did not cause his heart attack. It is possible that it did not reduce a possible cause, but this cannot be known, because statins do not address the primary causes of atherosclerosis, that’s obvious. If they did, they would be much more effective than they are.

Colin added: ‘I was a fool to stop taking the medication. Who cares whether or not someone is making money from statins. If I had carried on taking them, I might not be where I am now.’

It’s possible, and it is also possible, even likely, that if he had done nothing more effective than taking statins to address his heart condition, he would also have had a heart attack.

He may not get any more warnings. He has a stent, which will, in his condition, probably extend his life, that’s crisis care, and medical science has gotten quite good at it.

He is still a fool, my opinion, he has not taken responsibility for his own choices and is, instead, focused on irrelevancies, like the conspiracy theory. I hope that he wakes up. This is not about whether he takes statins or not, it is a change in attitude.

I am still studying the research, and may be continuing that for the rest of my life. But it appears, so far, to me, that while statins have been shown in some studies to reduce risk of a cardiac event by 30% or so, that is a reduction in absolute risk of about 1%. It is difficult to apply the statistics to a case like this. From what we know, it is likely that this patient would have been in the 2% that had a heart attack, even though they were taking statins.

And if he focuses on cholesterol, and is happy that his cholesterol is reduced and uses this as an excuse to feel safe, and does not take other, more powerful measures, and they exist, he will remain at high risk.

The evidence is staring Calman in the face, but he ignores it for a sensationalist story. Because he is reaching millions with this, he may cause real damage, cost real lives, so . . . special place in hell.

And a special place of reward for those who carefully report reality, what they actually experience, and who practice the real methods of science, which include and even require full attention to criticism, to skepticism. Suppression of skepticism is fascist and may, under some conditions, be populist. It is not science-based. Scientific response to skepticism requires a serious consideration of criticism, and the design of studies to test theses and possible criticisms of prior work, until the issues are so settled that contrary opinion truly and naturally becomes the extreme fringe, safely to be ignored.

We are not there yet.

To paraphrase Donald Tusk, there is a special place in hell for the statins deniers who continue to fuel public confusion and a vague perception that the drugs, as Colin said, ‘don’t really work’.

OK, I don’t actually believe in hell. Or Donald Tusk, much, for that matter. But they need to realise that the ultimate fallout from high-risk patients, such as Colin, stopping proven treatment will be illness, disability and death. Debate should – must – be at the heart of science. Just because someone has been awarded the title professor doesn’t make them right. And some of our greatest medical discoveries have come from so-called mavericks who ignored the orthodoxies.

Who the hell is Donald Tusk and why does Calman not believe in him? So this yellow journalist uses a highly inflammatory phrase to attack “doctors” for pursuing research and reporting results, and analyzing the results of other research, but he doesn’t believe it? I do believe in hell, and strongly suspect that Calman is in it. He is willing to lie and state as fact what he does not actually know, on a matter of high importance for public health. The patient is not in Hell, not from telling his story, merely possibly mistaken about some aspects of it. Nor is the physician. Simply being wrong is not enough to create the entry into hell. Lying can be, as an aspect of the general cause, denial in the face of clear evidence.

His last sentence, though, is true. This, however, simply suggests that we should, collectively, pay attention to the outliers, the alleged fringe (even where ideas are more outside the mainstream than those of the people he will be naming). It is very dangerous to suppress diversity of opinion, and even more so to suppress research results (the data is not opinion, if not fraudulent, and fraud in the reporting of data is rare.)

The public should, my view, wake up and demand that scientific controversies with major consequences be resolved with more research, better data, which, long term, leads to the decline of fringe skepticism. The expense of this would be minor compared to the cost of accepting a mainstream consensus that is not backed by thorough and careful — and unbiased — research. If drug companies want to support this, they would provide no-questions-asked grants to agencies not depending on them, but more on public support. Governmental support can help, but also tends, in the real world, to be dominated by political and economic considerations.

For we should make no mistake: the statins deniers are no Barry Marshalls.

(Barry Marshall discovered that H. Pylori caused ulcers.)

The trio mentioned in our piece aren’t the only ones. There is Dr John Abramson at Harvard, author of the misleading ‘20 per cent side effect’ BMJ study; Joseph Mercola, a discredited anti-medicine campaigner who claims to have millions of website views a day; Dr Uffe Ravnskov in Denmark, founder of The International Network of Cholesterol Skeptics, and others.

It is a particularly insidious type of fake news they peddle, apparently from a respectable, credible source, but laced with misinformation. They seem now even to have the ear of policy-makers.

So far, he has not mentioned any others, so this was terrible writing or editing. It appears he had an earlier draft, and removed material from it, and did not properly revise the rest.

Calling them “statin deniers” telegraphs that they are deniers of reality, that they insist on some fringe idea in the face of clear evidence. The evidence is nowhere near as clear as Calman believes, if he is sincere and not simply being paid. Is that comment, mentioning that possibility, a conspiracy theory? Well, I look at the article and what is featured at the top? A drug advertisement. Now, to think that there might be some possible conflict of interest is not a “conspiracy theory,” it is simply common sense that it’s possible.

There is far more evidence for the Big Pharma influence on scientific opinion and coverage of it, than there is for the “author and Big Food conspiracy theory” of others about these so-called “denialists.” But it’s actually irrelevant to the central theory. Someone is not wrong because they publish a diet book, as Calman seems to pretend. If there are problems with statin research — and there are clearly problems with many studies I have seen — then the scientific and rational approach is to look at the problems, not toss insults at those who point them out. Who raised an issue is an ad hominem argument, fundamentally fallacious from a logical perspective, unless the credibility of the person is the issue.

So this statement: There is Dr John Abramson at Harvard, author of the misleading ‘20 per cent side effect’ BMJ study — “Misleading”?

That is given as if it were a fact. Do the readers of this article know what “BMJ” stands for, and what it is?

And then he has, about this: “apparently from a respectable, credible source, but laced with misinformation.”

Great! This yellow journalist is calling an article “laced with misinformation,” published by the BMJ, formerly called the British Medical Journal, published since 1840, a wholly-owned subsidiary of the British Medical Association, using “apparently” to call the publication in question, when it is not in any doubt at all, it is a respectable, credible source, if any source is.

That does not mean that an article may not be misleading in some way or other. Articles in peer-reviewed journals can have errors in them, or may draw misleading conclusions, sometimes, but a credible journal will not allow that. The public does not read the BMJ, in general, rather, they read media reports, if the media thinks something newsworthy, and often the media exaggerates or misleads, and especially media like the Daily Mail. So the article:

Should people at low risk of cardiovascular disease take a statin? 22 October 2013

Calman refers to this as the “‘20 per cent side effect’ BMJ study“, adopting the language of critics of the “study.” It was actually a review, an analysis. The visible abstract does not refer to “20 percent side effects.” However, obviously the article did have something about the rate of side effects, because a correction was issued on that matter:

Corrections 15 May 2014 quotes or describes the withdrawn language:

The conclusion and summary box of this Analysis article by Abramson and colleagues

(BMJ 2013;347:f6123, doi:10.1136/bmj.f6123) stated that side effects of statins occur in about 18-20% of patients. 


The authors also mistakenly reported that Zhang et al found that “18% of statin treated patients had discontinued therapy (at least temporarily) because of statin related events.” 

However, the issue is actually much more complicated. In order to conclude that the report was a mistake, clarification from Zhang was sought. Zhang. The true rate of “statin related events” is not accurately known. The correction has:

The primary finding of Abramson and colleague’s article—that the Cholesterol Treatment Trialists’ data failed to show that statins reduced the overall risk of mortality among people with <20% risk of cardiovascular disease over the next 10 years—was not challenged in the process of communication about this correction.

How was the article “misleading.” It overstated the evidence. What it stated was not necessarily false, as to the true rate of statin side effects, and from my review of testimonies by statin users, the official rates are probably understated, from many causes. What people need to know, and what is clear, is that there is a significant rate of undesirable side effects, and that not only should they not ignore criticisms of statins, they should be vigilant for possible side effects, and consult if they believe they find one. Either way, statins are not emergency care, they only have a small long-term effect on cardiac risk, at best. If one becomes uncomfortable taking statins, and this is crucial: consult, period. Investigate, neither stop without consultation or continue without consultation. It is not the job of patients to worry about the nocebo effect, and attempting to “educate” them about it would be to discourage the patient from carefully reviewing their own condition and identifying *possible* side effects. The choice to continue or discontinue in the presence of a possible side effect is a complex one. There is no one-size fits all advice, other than Consult, Communicate, Co0perate — and Take Personal Responsibility.

If on the one hand, you don’t trust your practitioner, it is urgent to find another. If you trust your practitioner, but think he or she might be mistaken in this case, get a second opinion, but be careful: if there is an error in “standard of practice,” it might be difficult to find a second opinion unless one does one’s own research and knows what questions to ask. A good physician will not pretend to knowledge and will tell you *if you ask* whether they personally know what is coming from their own experience and knowledge or standard of practice, and if the latter, they will tell you how they know (or will look it up to assist your research).

For many of us, without a scientific background, the core issue is personal trust. When I have found that a practitioner did not encourage me to question his recommendations, I fired him, I don’t need a petty god in my life. In that case, I checked on what he had told me, not only from my own research but also with other specialists. He was, quite simply, wrong, but apparently believing he was right or simply not willing to engage with a “stupid patient.” This is a problem: if a physician, believing the standard of practice is wrong , at least in some specific case, prescribes something else, he can be sued for malpractice and can lose his license. Because no advice, even if generally correct, guarantees a positive outcome, a bias is introduced that disallows physicians from recommending what they personally believe to be true. A way for physicians to handle that is through providing full information. I could imagine being handed a paper to sign that has, “I understand that the recommendations given me today deviate from standard of practice, as I have been informed, I recognize that I have the right to independently research this matter, or to obtain a second opinion, and I take full responsibility for my choices made with this information.”

Was this article “full of misleading information” The “20%” claim was slightly misleading as to the very high standards of that journal. But was it substantially misleading? Was there other “misleading information” in the article? Was the conclusion misleading? If so, the journal editors, on review, appear not to have thought so.

There was substantial controversy over this article. The Data Supplement is huge, with many letters and responses, reviewer comments, etc. There is a great deal of additional information and analysis in the Responses page.

What Calman has done is to take a strong position on one side of an obviously open scientific debate. But he is pretending that this is based on clear evidence, it is not. It is based on confusion and rumor and innuendo.

Invited to comment on the study which suggests thousands of patients have quit medication due to statin confusion, and of these, many will have heart attacks, Dr Kendrick claimed it was he who was the victim, as such a claim amounted to ‘reprehensible bullying.’

Again, Dr Kendrick was not mentioned before, and the study in question has not been cited. Kendrick has published the mail he received,

Cholesterol Games

Something is off, because Kendrick refers to a photo that does not appear in what is visible to me of the article. I looked at the Sunday Mail main page to see if there was some photo and link “up front.” Nothing. It is possible that the article has been modified. The article itself contains evidence of additional material that is not in the text I can see.

Kendrick publishes both the mail from Calman and his responses, both before the article was published and after. He has this:

The Mail on Sunday have published a very long article attacking ‘statin deniers’ with pictures of me Zoe and Aseem at the front. I think I look quite dashing. Not as dashing as Aseem who is a very handsome swine, and also young, and intelligent – and brave. Yes, I hate him.

Nor am I as attractive as Zoe Harcombe. But hey, at least I got my picture in the national press. I wasn’t very keen on the bit where they called me self-pitying. But I was quite pleased that they included some of the stuff that I sent.

Kendrick is an entertaining writer. I had not heard of him until I was accused by a troll of being the owner of a sock puppet who had attacked him, and I investigated, and I recognized who the true attacker was, and it was not the person being bandied about by internet commenters, following suggestions from the same sock master. So I corrected those to protect the innocent, and started to read Kendrick. His series on the causes of heart disease is a clear account of the investigations of a true skeptic. And then I bought his books, at least the Kindle editions, not for “advice about statins,” but because the general issue of information cascades and mainstream error in science has long been of high interest to me.

In what I can read Kalman lied about Kendrick’s response. It’s that simple. Kalman is a troll who should not be in any responsible editorial position. He has the right to his opinion, but editorials should be labeled as such. Of course, the Mail may not care, their reputation is already trashed, and if they want sensationalism, hysterical screeds, he may be perfect for them, and they can all take their seat in Hell.

I am writing another review of an article on the cholesterol controversy that is far better, even though I consider it, in itself, misleading. At least it focuses on the issues! And it has links to sources, much of it is verifiable. If I look at the full debate in the BMJ on this issue, there is much information as well, links to sources and arguments by experts.

The issue is often presented as “Who should the public trust”? It’s not exactly the right question.

Nobody is infallible, but if we are paying attention, and if we act to inform ourselves and to test ideas, we are the world’s foremost experts on our own condition. Sanely, we consult with experts on the general field of interest, but blind trust in anyone else is dangerous, just as dangerous as blind trust in our own correctness. On the other hand, trust with eyes wide open will recognize when there are problems. Trust that also verifies and confirms, is far more powerful than blind trust.

Medical fascists, I’m starting to call them, do not want a fully informed public and they want to suppress and discredit and disable dissent, giving an old argument, that “quacks” or whatever term they use, it might as well be “socialists” or “liberals” or “fascists,” for that matter, will mislead the ignorant public. The answer to misleading information is not suppression and censorship, which the fascists would have, but verifiable information, or at least balancing argument, and all of us are responsible for our choices.

If I don’t have enough information, it is my responsibility to obtain it, if the choice matters to me.

Unless my doctors have actually lied to me or were grossly incompetent (in which case all bets are off), my doctors will not be sued for malpractice if I die because I chose to follow a recommendation that did not succeed in protecting me.

This is the obvious truth about statins and heart disease. They are not miracle drugs, silver bullets, that, if taken, strongly prevent heart disease. The reduction in risk is roughly from 3% to 2%. Another way to put this is that if I don’t take statins, I might die, and if I take statins, I might die, and if I die we don’t know, from that whether the choice was correct.

There are comparisons being made with vaccination, and “anti-vaxxers.” Vaccination, as a general practice, has made a *drastic* difference in the rates of many serious diseases, but there are also problems. I had a friend who died because his daughter was given Sabin oral vaccine. He was maybe in his thirties and had never been vaccinated, contracted polio, and died from it. This was a rare event, and as a public policy, given that the vaccines have saved millions of lives, and that is not controversial, at least not to me, a decision can be made to tolerate some level of harm to a few.

However, what was missing in that situation was a careful review of family members, and informed consent by the whole family to the child’s vaccination.

There are physicians who work with patients who decline vaccination, not to condemn them, but respecting their choice, and keeping up communication, and when risk becomes high, these physicians find that patients are willing to take the risks of side effects.

Blaming the anti-vaxxers for poor educational outreach, accusing vaccine refusers of ignorance and child neglect, is not a solution, it will only harden opposition.

Medical fascism is not a sane path to better health care.

From what little I have seen of anti-vax information, there are some concerns that appear legitimate, and it should be easy to research these, thoroughly. Is it?

To be sure, one of the concerns is that safety studies were never fully completed. Why not? Fact: the drug companies are not going to perform those studies unless they must, and they would be the wrong manager of safety studies. We need systemic changes, we, the public, must take responsibility for supporting the best science. The system we have expects drug companies to shoulder that burden, and there are reasons for that, to be sure, for medicines that are not so likely to be useful, but . . . who watches the watchers? In theory, governmental agencies do this, but they can be a revolving door with industry lobbyists, where are the lobbyists for the public interest? The only ones I have seen are ones with an axe to grind already. We need facilitation of basic science, not predetermined political positions.

Most of what I have seen of anti-anti-vax discussions, is polemic and hysteria, itself. The risk of not vaccinating is normally low, in a vaccinated society. Yes, there is a possible risk, from what has become a rare disease, which must always be balanced against other risks, to be sane.

If giving poor medical advice is to be considered murder (as it was in a recent case where the advice was actually outrageous), then hundreds of experts, and thousands (or even millions through compliance) were possibly guilty of murder in the original advice on dietary fat and cholesterol. That advice has been modified and clarified over the years, but it is still seriously defective.

If a patient depends on statins for controlling atherosclerosis, and does not implement “life style adjustments,” the statin prescription might actually be causing harm. Some of those harmed will die. “Murder by Standard of Practice.”

Standards of Practice should be subject to continual review, with controversy recognized, not deprecated as “denialism.” Where objections are incorrect, that can be examined and addressed with care, not with blind certainty that what was recommended for a long must necessarily be right.

Semmelweiss was rejected because what his research found showed that doctors were transmitting puerpural fever to women giving birth, killing thousands of mothers, and that idea was so horrifying that it was rejected as not having any known mechanism. This was before Pasteur showed that bacteria could transmit disease, invisibly. It did not help that Semmelweiss himself was probably suffering from early-onset Alzheimer’s disease, and became quite angry at being rejected, and extreme on his attacks on those rejecting his research. The lesson: just because someone is crazy (“conspiracy theorist” asserts insanity) does not show that they are wrong. Factual assertions should be checked, at least by somebody.

One of the problems in medical science is that media reports new research with lurid or exciting headlines that often do not reflect what is actually shown. So a paper that finds “there is no evidence for the benefit of statins for a certain population group,” becomes, “Study claims statins are useless.” Media want punchy headlines and “news you can use,” so they take information and massage it into what they think people want to read.

And we, the public, tolerate that and that makes us responsible for it. We could create reliable media, this is a horn I have been blowing for years. We don’t. Why not? Too much work, too much bother, and I think I’ll check Facebook or Apple News for something exciting, or watch the football game, or whatever floats my boat for a while, even if the stream is heading for a huge waterfall.

The patient example here was absolutely brilliant. The real problem of that patient was obvious. He was high risk, he had already had a heart attack! That is an extremely high risk patient, who made have needed a stent many years earlier. I’m not eager to have a stent put in, but if I have an actual heart attack, I’ll could easily be on my back in an operating room with a catheter in my heart and a cardiologist will look at the images and decide, on the spot, whether or not to insert one of those little beasties, and I am not so likely to second-guess him.

This poor fellow actually had a heart attack at 39, and obviously failed to take the warning seriously. He was very, very high risk, and became more so. He did nothing at all, at least nothing that is reported. He was extremely high risk! Statins are only a part of this picture, and his doctor recognized that. But since the story was about statin denialism, that fact is deprecated, given no real coverage. Instead the focus is on alleged sources of statin denialism, vague. There is no sign that this fellow read any of the “denialist” research. No, he listened to the radio, to discussion programs, and took away only a conspiracy theory, that he believed.

He suffered from denial, avoidance of reality, of what was really going on with his body, and he wanted to hear that this drug that he didn’t feel good taking was useless, but he did not then look for what would be more useful, and there is really no controversy that there are more useful interventions (and better measures of risk than cholesterol). It also looks to me like his original cardiac care was shoddy and incomplete. Did he have a cardiac cat scan or a stress test or other tests? Was he advised to maintain contact with his cardiologist? Did he have a cardiologist?

It was easy for his physician to write a statin prescription, but this is what the “statin skeptics” have been pointing out: Statins, if they are effective at all, are not powerfully effective to prevent heart disease (i.e, they are very unlike proven vaccinations). If they belong in a cardiac care regimen, it would not be as the foundation, as the core, the must-have. What belongs there is probably exercise (including, initially, monitored exercise. Here in the U.S., now and probably then, cardiac rehab would have been prescribed. It is fairly expensive, but also effective, if the patient realizes that they need to exercise, or their risk of death at any time becomes high, and then the patient continues to follow a program. A long-term program is not at all expensive, it can be free. So much walking, for example, so many times a week.

And then there is diet, and we need much more research on diet. It’s shocking how little is actually known; rather the field of nutritional science is full of “facts” that aren’t. They are ideas that became popular, with some scientific foundation, generally, but not enough to develop clear conclusions.

So exercise and diet. The actual causes and mechanisms of the development of atherosclerosis are not well understood. When we no more, it may become possible to design drugs with much more powerful effect than statins. If it is true that cholesterol is not the cause of heart disease (and there are substantial claims of that), but is only, at best, an associated symptom of something else, then lowering cholesterol will not have much effect, if any, on disease progression. Statins also have other effects which may give some level of protection. The black and white arguments that yellow journalists love are “Statins are miracle drugs that save lives, except for people stupid enough to follow diet-book authors,” and “Statins are useless, and dangerous, and nobody should take them, and those that do are stupid blind followers or orthodoxy.”

It is not that reality is “somewhere in between,” and I would never suggest that “equal time” should be given to “two sides,” but rather that reality is not a position or point of view, and that it is never expressed fully in some simple-minded statement that attempts to shut off inquiry.

The fundamental problem, as seen long, long ago, is ignorance and attachment, combined. When we become more interested in reality, and trusting reality, rather than in promoting our own individual points of view, we will make progress, and the world will transform.


Subpage of science-and-medicine/labos/
Butter nonsense: the rise of the cholesterol deniers
The Guardian, Tue 30 Oct 2018
Sarah Boseley

A group of scientists has been challenging everything we know about cholesterol, saying we should eat fat and stop taking statins. This is not just bad science – it will cost lives, say experts

Bosely leads with a snarky headline, and a tight set of assumptions presented as if fact. She chooses to call criticism of the cholesterol hypothesis “deniers” rather than “skeptics.” One by one:

  1. “Everything we know.” What do we know? Is popular opinion “what we know”? Are they challenging “everything we know,” or just some of it? New ideas in science are often presented as overturning “everything we know,” when they do no such thing. It is common that new ideas challenge, not what we know, but our ignorance, because “what we know” is necessarily incomplete. It may also incorporate errors, due to defective historical process that drew conclusions beyond what the data actually showed. The history of science is full of examples of this. Pointing this out is not an argument for any particular position, and my own expectation is that the mainstream is generally more right than wrong. But sometimes “mainstream errors” can be doozies with enormous human cost.
  2. “We should eat fat and stop taking statins.” Someone who says that is not functioning as a scientist, science does not tell us what to do. It gives us tested information on which we may base predictions of the possible or probable results of actions. Bosely is presenting an extremely shallow view. She is the Health Editor for the Guardian, and that is worrying me. I would expect better, but this is actually an editorial, not simple reporting, but presented as fact. What scientists allegedly are making this recommendation? Scientists and journalists also become book authors, and sell books, and that can create a conflict of interest. Bosely is an “award-winning” journalist. So is Gary Taubes. Who has done more research on diet, Bosely or Taubes? Who is taking a safe position and who is persisting in spite of flak?
  3. This is not just bad science. No, bad science is belief strong enough to suppress continued awareness of the possibility of error. Bad science can be”mainstream.” She is assuming that scientists are advocating conclusions, (what we “should” do) and she calls it “bad science,” because she obviously believes the conclusions she states are wrong.
  4. it will cost lives, say experts. So there are scientists, allegedly (I’m not saying she is incorrect and I will be looking for examples in the article), who are giving advice (which actually could qualify as bad science, because a scientist is not expert in what an individual should do), and then there are “experts” who think that advice will cost lives. That is not actually known. there are studies, and I have read some of them. It is speculative. Benefit from statins is generally found to be a risk reduction of death from a heart attack, but much less reduction in overall death rate, sometimes not significant.

In stating that, these experts are extrapolating from a presumed or studied risk factor, to outcomes, but human nutrition is complex, and so is our resp0nse to statins, and, further, even if some course of action might “cost lives,” — which may not be precisely defined, and which must mean increased risk — it might still be what people choose.

As an actual example, choosing not to take a statin might statistically increase risk of a heart attack by 1%, and so, one might imagine that in a treatment population, refusing the drug will increase death rates by 1%. but unless this is actually tried, in a real context, it may not be true and the real choice might even be life-saving. This depends on the alternative, which studies rarely cover.

Suppose that a population is given one of two sets of advice. first group, take a statin for ten years (and compliance is monitored). Second group, do an exercise program (which would also be monitored for ten years.) From what I have read, the exercise group could be expected to have a lower death rate, because exercise is far more effective at promoting heart health than statins. Further, someone taking statins may think that they are protected, when the reduction in death rate is only 1% (from 3% with placebo), and so may not take other measures (such as diet and exercise).

In my own history, what has shocked me is that I was prescribed statins, and, originally, years ago, there was no mention of an exercise program, i.e., disciplined, specific exercise. Yet it is common knowledge that an exercise program is a powerful response to cardiac risk (much more so than statins). To his credit, my cardiologist, more recently, recommending statins and an angiogram, also said “and I want to put you in cardiac rehab.” I did the rehab, set up a continuing program, and have put off the statins and the angiogram, pending better understanding. He actually understood and did not argue with me, and we continue communication over the issues.

Butter is back. Saturated fat is good for you. Cholesterol is not the cause of heart disease. Claims along these lines keep finding their way into newspapers and mainstream websites – even though they contradict decades of medical advice. There is a battle going on for our hearts and minds.

Boseley, I could claim, is a reality denialist. Let’s look at this.

  1. Butter is back. Is it? That is a description of a social condition. What is the history of the demonization of butter and saturated fats? Was it based on solid science? Or did studies, when actually done (guidelines predated the studies), show that butter consumption did not increase heart disease risk?
  2. Saturated fat is a natural food. Visiting Morocco, I saw how a local reacted to a package, maybe two pounds of sheep fat, aged in a traditional process. Our guide ate the whole thing with gusto. Craving fat is normal, it is a precious source not only of calories, because it is calorie-dense, but fat is also nutritionally essential (unlike carbohydrates). It is entirely possible that fat is good for you, but that needs more precise definition. In what context? For what goal? The studies that showed higher death rate from fat consumption were seriously flawed, study populations being cherry-picked. This is all well-known to the cholesterol skeptics, covered by Taubes in detail in GCBC and, I assume, other books. That studies were defective does not negate the conclusions, but . . . it does pull the rug out from under the argument that because some study found something, used to develop recommendations that were allowed to become dogma — which happened — therefore this is solid science, based on “scientific research.” Once the dogma was established, ongoing research became warped, in terms of what could obtain funding, what could be published in major journals, and publishing anything else was considered “dangerous,” just as Bosely and her “experts” are doing here. Again, that doesn’t mean they are wrong, but that something is off about the conversation.
  3. Cholesterol is not the cause of heart disease. Reality denialism. It is very obvious from the cholesterol and statin studies that cholesterol is “not the cause.” If it were the cause, major reductions in cholesterol would produce major reductions in disease incidence, and they do not. Rather, cholesterol levels are “associated” with disease incidence. They are “risk factors,” perhaps, which can be non-causal. It does not appear to me that causation has been established, and the true continued controversy over causation is a real issue. There is also controversy over how to translate cholesterol levels to estimated risk. It is fairly clear that total cholesterol is not so useful, and then there has been a continual series of refinements of this. Bosely glosses over all this, so far.
  4. Decades of medical advice is so much hot air, at least warmed at the time, not scientific evidence at all. Boseley is simply assuming that the advice was solidly based, when, if we go back and look at the actual advice, it was, at best, premature, and at worst, may have caused millions of premature deaths. Does she care? Those who do not study history are doomed to repeat it.
  5. There is a battle. Indeed. There is a battle between science, self-interest, and public interest, very complex, between real science and entrenched organizational positions, which almost always defend themselves to the bitter end, and this has been present for many years, and between questioning of authority and defense of it, and ego. Boseley, in her book, blames the marketers of “junk food.” In fact, much of what she says might find agreement with the “denialists.” Here is a review of the book by the publisher. Here are some Goodreads reviews. Boseley is not a deep thinker, I’m afraid. Her solution: calorie restriction, which is largely a failure as advice. Mixing up fat with sugar and highly processed carbs, she misses what does actually work, in the experience of many (and in studies, though studying diet is quite difficult).

According to a small group of dissident scientists, whose work usually first appears in minor medical journals, by far the greatest threat to our hearts and vascular systems comes from sugar, while saturated fat has been wrongly demonised.

Instead of informing us as to fact, like a good journalist, and letting us make our conclusions, she presents a pile of interpretations. It is not a specific group of scientists, and she does not name them, or provide sources for what they actually say. But it is a “small” group, and they are “dissidents,” and their work “usually” first appears in “minor medical journals.” She puts in “usually,” I assume because it is not always so, and most medical work appears first in minor journals. The point is to discredit, with an ad hominem argument, what they say, but what she first gives us is not particularly controversial. That is all well-established, if we review the literature instead of depending on a subset of experts.

There are many signs in the article that Boseley has an axe to grind. For example:

. . . Mainstream scientists usually keep their disquiet to themselves. But last week, some broke cover over what they see as one medical journal’s support for advocates of a high-fat diet. More than 170 academics signed a letter accusing the British Journal of Sports Medicine of bias, triggered by an opinion piece that it ran in April 2017 calling for changes to the public messaging on saturated fat and heart disease. Saturated fat “does not clog the arteries”, said the piece, which was not prompted by original research. “Coronary artery disease is a chronic inflammatory disease and it can be reduced effectively by walking 22 minutes a day and eating real food,” wrote the cardiologist Aseem Malhotra and colleagues. The BHF criticised the claims as “misleading and wrong”.

There are only 169 signatures to that letter, and 55 did not give an academic affiliation. The error is a piece of evidence that Bosely was looking for whatever she could say to strengthen the anti-denialist impression, and weaken the skeptical claims.

Saturated fat does not “clog the arteries.” Nobody with specific knowledge believes that. The argument has become that cholesterol somehow causes faster or more extensive buildup of plaque on the walls of arteries. This happens in the larger arteries, not in small ones, but the image has been promoted of fat building up in arteries. Fat never enters the blood. “Chronic inflammatory disease” is basic science, and, in fact, everyone agrees that exercise is the best treatment, and then there is controversy over what is the best food. So what was “wrong”?

The history of the cholesterol hypothesis is replete with confident recommendations by organizations like the British Heart Foundation that later turn out to be far from the mark. The history of diabetes involved political decisions that favored the use of insulin over reducing carbohydrates, insulin was sold on the basis that, with it, you could eat whatever you liked. No need to “deprive yourself.” No problem with sugar and refined carbs. And high-fat diets, eaten for millenia by some cultures, were demonized even for diabetics, on the basis that they had not been adequately tested. But the recommendations being made had also not been adequately tested? What was the difference?

And then we get into conspiracy theory territory. My own view is that no formal conspiracy is necessary, just a lot of actions that create social pressures to conform, to “go along to get along.”

In any case, the sports medicine journal article:

Saturated fat does not clog the arteries: coronary heart disease is a chronic inflammatory condition, the risk of which can be effectively reduced from healthy lifestyle interventions

The abstract:

Coronary artery disease pathogenesis and treatment urgently requires a paradigm shift. Despite popular belief among doctors and the public, the conceptual model of dietary saturated fat clogging a pipe is just plain wrong. A landmark systematic review and meta-analysis of observational studies showed no association between saturated fat consumption and (1) all-cause mortality, (2) coronary heart disease (CHD), (3) CHD mortality, (4) ischaemic stroke or (5) type 2 diabetes in healthy adults.1 (2015) Similarly in the secondary prevention of CHD there is no benefit from reduced fat, including saturated fat, on myocardial infarction, cardiovascular or all-cause mortality.2 (2014) It is instructive to note that in an angiographic study of postmenopausal women with CHD, greater intake of saturated fat was associated with less progression of atherosclerosis whereas carbohydrate and polyunsaturated fat intake were associated with greater progression.3 (2004)

I have linked to the sources cited and added the year of publication.

This is an editorial, hence it makes an overall judgment. As something challenging “popular belief,” it can be expected to arouse hostile response, it is rare that popular belief disappears from some single challenge! I find this article stunning. What was the response?

Implausible discussions in saturated fat ‘research’; definitive solutions won’t come from another million editorials (or a million views of one) August 2018

[response to] Open letter from academics, practitioners, students and members of the public to the British Medical Association, the British Medical Journal publishing group, and the British Association of Sports and Exercise Medicine regarding editorial governance of the British Journal of Sports Medicine October 2018

Guest Post: Does the BMJ publishing group turn a blind eye to anti-statin, anti-dietary guideline & low-carb promoting editorial bias? October 2018

The open letter. (read on 3/2/2019, archived)

My quick summary: the issues remain legitimately controversial. 


under construction

Subpage of science-and-medicine

The Cholesterol Controversy

Christopher Labos on February 15, 2019

He starts out with a conclusion. He does acknowledge that there was controversy, but claims it is time to consider it closed. I see a problem in that introduction. First of all, do we know the etiology, the cause and course of arteriosclerosis? Is cholesterol a cause or an associated “risk factor”? What do we know and how do we know it? What is possible, what is probable, and how do we assess these? These are questions I have in mind as I go over the article. If some measure is only a risk factor, associated but not causative, altering the measure will not necessarily reduce the actual risk.

The photo caption:

Two bags of fresh frozen plasma. The bag on the left was obtained from a patient with hypercholesterolemia, and is cloudy with undissolved cholesterol particles.

Source. No information on cholesterol levels. Okay, but the significance? So blood with lots of cholesterol looks different than blood with little. So?

A recent article in The Guardian raised an interesting question. Is cholesterol denialism a valid form of skepticism or pseudoscience? Is there valid debate surrounding the benefit of cholesterol medication or is the evidence and the scientific consensus clearly on one side of the issue?

It is true that we argue about cholesterol far more than the other cardiovascular risk factors. It is hard today to find anyone who doubts the harmful effects of smoking, diabetes, hypertension or the lack of exercise. So why is there a cholesterol controversy but unanimity on other risk factors?

Okay, the Guardian article, our subpage.

I found value there, but only by searching for papers she referred to and related documents. The article itself was next to useless except as a great example of assuming the status quo is better than whatever is proposed to replace it. If lots of people criticize something, and if danger is asserted without evidence other than established belief, well, dangerous ideas should not be allowed to be published. I find it so ironic that advocates of evidence-based medicine, allegedly scientists, will declare criticism of what they believe “denialism,” when skepticism and criticism is essential to science even if later shown to be wrong. And who decides when later is? There a many who appear to believe that they represent the “consensus,” but they do not actually measure consensus. Signatures for the open letter were solicited on a blog, and there were

Bosely claimed “More than 170 academics signed a letter.” This shows what? The actual solicitation and signatures were not limited to academics, nor by field of study. There are currently 169 signatures, but if we include the original authors, it becomes 173. Looking at affiliations and counting those that do not show an academic affiliation, there are roughly 55, leaving 128. This was meaningless, in fact, given the population involved. Yes, it would show that 169 people agreed with the letter, but out of how many? Science is not a vote and votes are meaningless, unless conditions are set for it to truly represent a community. This was on the order of a petition requesting investigation of charges of bias.

The essence here is a conspiracy theory, that journals are publishing articles favoring low-carb diets and the like as a conspiracy to promote some crank ideas. Perhaps book authors are pimping fads to make money selling books. Boseley, however is also a book author, with her own advice. Perhaps she has a conflict of interest? Were it not for her implication that others are promoting dangerous ideas to sell books, I wouldn’t comment on it. But she is implying that, which is a huge insult to any academic, as many of the cholesterol skeptics are.

I have concluded that Boseley had an axe to grind, there are way too many signals of high bias.

Why is there a cholesterol controversy? It is very obvious why. What is controversial? He does not begin with a definition. Cholesterol is found inside arterial plaque. That is not controversial. What is controversial is whether or not cholesterol causes the plaque, and, further, how blood levels influence this process or exacerbate it, and, further back, whether or not dietary cholesterol leads to harmful blood cholesterol, or saturated fats, or all fats, depending on what point in history we go back to.

Very many of the original cholesterol hypotheses (i.e, there are more than one) have been disconfirmed by more careful study, but the attack on skepticism has remained constant, never recognizing that, at least in some ways, the skeptics were correct. For decades, Dr. Atkins “nutritional approach,” he called it (not “diet” it is actually not restrictive, but prescriptive, eat what he suggests and you may not crave the things he suggests be avoided), it was called a “fad diet,” though it was actually quite old and whether it worked or not did not depend on its age, he was called a quack, etc., etc….. But when I told the nurse at my doctor’s office that I was starting out on Atkins, she had one comment, “Oh, that works!” And then that the Atkins diet works is ascribed to many asserted causes that are not necessarily real for the diet as it is, and misinformation about Atkins abounds. It is not a high-protein diet. Atkins was correct, and eventually funded research to test his program against other common ones. Surprise! In spite of being high-fat, Atkins eaters improved cardiac risk factors. And then, of course, he was accused of influencing the outcome of the study, but studies funded by companies with billions of dollars at stake are just good science? He had chosen a skeptical professor to fund. Smart guy, rest his soul.

Labos goes into the history of other controversies, that we allegedly forget. He covers  disagreement over the harm of tobacco, blood pressure, the discovery of cholesterol, and then has

One of the earliest researchers in cholesterol was Nikolay Anichkov who in 1913 reported that rabbits fed pure cholesterol dissolved in sunflower oil developed atherosclerotic lesions, whereas the control rabbits fed just sunflower oil did not. At the time, this research had little impact and its importance was only recognized in retrospect. As Daniel Steinberg states:

If the full significance of his findings had been appreciated at the time, we might have saved more than 30 years in the long struggle to settle the cholesterol controversy and [Anichkov] might have won a Nobel Prize. Instead, his findings were largely rejected or at least not followed up. Serious research on the role of cholesterol in human atherosclerosis did not really get under way until the 1940s.

And just what is the significance? Dietary cholesterol does not cause atherosclerosis. If his findings were “rejected,” that is tragic. Research findings should be respected, and problems only arise in interpretation.

Cholesterol is found in atherosclerotic deposits. That is not controversy, but is this cause or is it effect? And how does the development and progression of such deposits relate to diet and to blood cholesterol level?.

Laboratories that tried to reproduce Anichkov’s results using dogs or rats failed to show that a cholesterol rich diet caused atherosclerosis. This likely occurred because dogs and other carnivores handle cholesterol differently from rabbits and other herbivores This led many to dismiss Anichkov’s results on the grounds that rabbits were not a good a good model for human physiology and that his research was likely irrelevant to humans.

Which still holds as an objection. Rats often are close to human response. So maybe rats are reactive to the cholesterol they were given, or the taste stressed them so much that they developed the arterial lesions that lead to initiation of the processes that build up plaque.

The criticism leveled against his research was not entirely unfounded.

On the one hand, I’d like to congratulate him for admitting the obvious, but what is rather obvious to me is that he still thinks it was at least somewhat unfounded, he still thinks this is relevant to human atherosclerosis, he has an axe to grind. Otherwise, without that, he would have skipped over this irrelevancy.

We have seen countless times how animal research does not translate into humans and to accept the “lipid hypothesis” based purely on Anichkov’s work would have been premature.

To say the least.

It should have been an invitation for others to pursue this new line of inquiry.

“Should have.” By what standard? This is obvious to me: Labos believes the lipid hypothesis. That’s okay. But it means that he is not a neutral judge, unless he could truly and consciously set aside what he believes, to study and make sure he understands what he is criticizing. He would, if interested in science, be attempting to prove himself wrong, not right. But, no, he’s convinced he is right and is only going through this exercise to prove that it’s totally silly to believe anything other than what he believes about cholesterol. He is pseudoskeptical about cholesterol skepticism. But, again, the conversation can have value.

Eventually in the 1950s John Gofman would begin his research in lipoproteins and determine that there were different types of cholesterol. Today of course we acknowledge that low-density particles like LDL are atherogenic whereas high-density particles like HDL are not. Gofman demonstrated this in the 1956 Cooperative Study of Lipoproteins and Atherosclerosis although the distinction of LDL and HDL would only come later.

Notice how fact is mixed with conclusions. Is LDL “atherogenic,” or is it merely an associated risk factor, or, third possibility, it has some effect on some more powerful, more critical cause? And notice, the early cholesterol hypothesis did not discriminate between HDL and LDL, and even deeper distinctions are moving into common practice.

I very much appreciate the link provided. The theme here is, ostensibly, “Why is there a controversy.” That link is to a review of the study. From that:

The Report provided an unprecedented majority and minority statement of the investigators. The group agreed that there was predictive value in the lipid measures. It diverged in interpretation.

Why was there controversy then? It’s fairly obvious. Social issues, and probably a drive to get “useful results” which can warp science. That page is part of HEART ATTACK PREVENTION A History of Cardiovascular Disease Epidemiology which I intend to use thoroughly. But not yet.

Despite the controversy that surrounded the Cooperative Study of Lipoproteins and Atherosclerosis, there was evidence that cholesterol (regardless how you measured it) was correlated with coronary disease. The work of Carl Muller studying patients with familial hypercholesterolemia was also largely supportive of this link. The work of Brown and Goldstein and their isolation of the LDL receptor would prove the genetic cause of this disease and win the Nobel Prize, but this work was still decades off. However, it could be argued, with some validity, that individuals with a genetic cause for their high cholesterol were not representative of the general population. Nevertheless, by the mid-1950s there was enough interest in this new potential risk factor that large-scale epidemiologic studies were launched.

The launching of those studies was appropriate, given the evidence available. We do need to remember that correlation is not causation. Muller (article linked above) does not clearly relate to the issue under discussion. Of course there is “some validity.” I notice, again, how Labos is organizing his post. I have seen this from fanatics many times: they will assert a series of weak facts that they consider connected, and then they will assert that the preponderance of the evidence (which appears to be the number of facts claimed) demonstrates that their belief is therefore true. It is not the collection of evidence that is the problem, exactly, but the conclusions drawn from it. But then Labos does go closer to the heart of it.

The Seven Countries Study has certainly been one of the most notorious studies of the period and its originator, Ancel Keys, has become a popular target for attack. The main thrust of the attack is that he cherry picked the data in order to obfuscate the truth that saturated fats are unrelated to heart disease. The reality is slightly more nuanced and a detailed review of the Seven Countries Study highlighting its strengths and limitations can be found here for anyone who is interested. Suffice it to say, the main argument that can be leveled against the attempt to deny the role of cholesterol in heart disease is to point out that other studies have shown similar results.

Now, Labos appears to mindread Keys, which I would not do. But perhaps he is merely reflecting the claims. This is obvious: the Seven Countries were selected from a much larger possible set, and I’ve seen results plotted including the larger set. The alleged strong correlation disappears. Did Keys do this deliberately? Maybe. Maybe he had strong political motives, maybe something else. However, the link is to a remarkable document, a detailed defense of Keys that takes into account the critiques.

“Other studies have shown similar results” requires an assessment of “similarity,” which can easily be biased. Further, Labos is slipping from correlation (which Keys claimed and which may exist), subtly into causation, i.e., “role.” There is an abundance of evidence, almost too much. But what would a neutral review (if that is possible, I’m not sure) conclude? And, more to my interest (and Taubes as well, by the way) what research could be designed to definitively answer open questions?

If the opinion is spread that the question is closed, it has already been answered with overwhelming evidence, there will be two outcomes: one is some level of suppression of research and discussion, and the other is a hardening of positions. Nobody likes to be told that they are wrong, everyone knows they are wrong, and they should just shut up and, and what? Die? They are called “die-hards.” People who are willing to question authority, the popular wisdom are precious, if they do not go too far and attempt to oppress others. There is a danger in challenging the status quo. There are few who will welcome difficult questions. They condemned Socrates to death for asking inconvenient questions.

Semmelweiss, on puerperal fever, was right, and was rejected for two reasons: his study showed that physicians were causing the death of patients, many of them, and he also became highly caustic. The personal defects of critics, if we care about science and human welfare, must be set aside to examine claims. This cuts in all directions. I will be reviewing the document on Keys’ Seven Countries study and checking the information there against what is written about Keys.

Studies like the Ni-Hon-San study and the Honolulu Heart Study examined the rate of heart disease in Japanese men living in Japan, Hawaii and San Francisco. They found that compared to the men living in Japan, Japanese men who had migrated to Hawaii had higher cholesterol levels and higher rates of heart disease. Japanese men who migrated to San Francisco had still higher rates. The not-unreasonable conclusion was that the increase in heart disease was environmentally mediated and that as these Japanese men adopted the diet and lifestyle of their adopted country, their cardiovascular risk rose accordingly.

I will need to look at those, but Taubes, for example, attributes the rise in heart disease to the common modern diet, and what is stated here does not show that fat was the causal factor, nor does it show that cholesterol is causal, which is the substantial factual issue. If cholesterol is not causal, but merely associated, then treatments to reduce cholesterol are unlikely to work, except possibly through some associated effect. One of the predictions of the cholesterol hypothesis is that reducing cholesterol will reduce atherogenesis, and a strong effect would be expected, not a weak one. What is the reality?

Finally, we cannot forget the impact of the Framingham Heart Study. Begun in 1948 and still ongoing, this project has provided many insights into the causes of heart diseases. It established that risk factors like cholesterol, hypertension, smoking, lack of exercise, and obesity all affected the risk of cardiovascular diseases. In fact, it coined the term “risk factor”.

Suffice it to say, whatever criticisms one wants to level against the Seven Countries Study, there was plenty of other data suggesting a link between cholesterol and heart diseases. Not unsurprisingly, researchers eventually resolved to try and do something about it.

Looking forward to seeing what Labos writes about this.

(to be continued!)

Science and Medicine

I’ve been spending quite a bit of time lately reading about fat in the diet, cholesterol, atherosclerosis, and statins. Some story:

Sometime around 1990 or so, I was diagnosed with hypercholesterolemia and a low-fat diet was prescribed. It’s difficult for an individual to assign cause and effect, but that diet coincided with a period of increase in my weight, and something else happened. Sometime around 2007 I was diagnosed with prostate cancer. Both of these may be connected with “low fat diet,” but the state of research on this is poor.

By the middle of the first decade of this century, my wife went on an Atkins diet. My physician, noting my high cholesterol, recommended the South Beach Diet, which could be called Atkins Light. I read up on them, and it appears to me that Atkins had more science behind it. (Both Atkins and Agatston were cardiologists). It was called a “fad diet,” but was actually quite old — my physician pointed to a Diabetes textbook from the 1920s that considered a “low-starch diet” an effective treatment for type 2 diabetes.

Eliminating most fat from a diet will predictably lead to replacing it with something, and unless one goes high-protein, it will be carbs. In the 1990s, it was pasta, I had never eaten much pasta before, but it became a staple.

On Atkins, not only did I lose weight rather efficiently, but I was now eating my favorite foods. When I was a kid, they would say to me, “Have some bread with your butter.” My favorite food, besides steak, was baked potato with butter and sour cream, emphasis on the last two.

Eventually, I came across Taubes’ Good Calories, Bad Calories, and read the story of how it came to pass that low-fat diets were recommended, and, as well, that cholesterol came be be considered dangerous in food, and cholesterol levels “risk factors” for heart disease.

And then that one could prevent heart disease using statins.

It’s a horrifying story, where the scientific method was not followed, where poor studies were used to create a drastic change in diet, and it is possible that this cost millions of premature deaths.

Or not.

What’s the truth? How would we know? Under this page, I intend to collect individual studies. Is this related to cold fusion? Well, peripherally. Before Taubes wrote GCBC, he wrote Bad Science, about cold fusion. As a science journalist, he had occasion to look at the idea that salt in the diet was dangerous, and found himself looking at developing beliefs that were not adequately tested, that turned into standard medical advice without balanced consideration. And then he did the same with fat in the diet.

There are parallel issues with cold fusion. Widespread “scientific opinion” developed through information cascades and with diet, weak associational or epidemiological studies, rather than solid science. Wihen it was proposed that fat in the diet was causing heart disease, it came to be seen as a health emergency, and considered it would be foolish to wait for more solid science, because waiting, people would (it was believed) continue to die unnecessarily, and (it was also believed), removing fat from the diet could not possibly do harm. After all, weren’t we too fat? And aren’t we what we eat?

I’m not going into all the details here, but the original fat/cholesterol hypotheses was far, far from reality. Study after study failed to confirm it, but there was always an excuse and the cholesterol hypothesis was a moving target.

At first it was believed that eggs were dangerous foods, to be avoided, because they have high cholesterol content. Eventually, those recommendations almost entirely disappeared. Cholesterol in the diet does not cause blood cholesterol.

Originally, as to fat, it was all fats, then it moved to saturated fats (such as butter). When it was found that butter consumption did not correlate with heart disease, it got more and more complex, various kinds of fat, etc.

The cholesterol hypothesis (relating to blood levels) started out as all cholesterol. Even though total cholesterol continues to be used by many, within the last decade or so, fractionating the cholesterol came into fashion, so we ended up with “good cholesterol” (HDL) and “bad cholesterol” (LDL) and a consideration of the ratio, and then it got even more complex.

I was told by my physician that cholesterol was actually a relatively poor measure as to risk. I had familial high cholesterol, my mother had high cholesterol, and died in her mid-nineties from congestive heart failure, not from atherosclerosis. My doctor wanted me to see a cardiologist and told me that he would not be able to find one who would not want to put me on statins. I did see a cardiologist, had a stress test (no problems), and continued to monitor my blood lipids. I also generally had C-reactive protein measured, which is apparently a better predictor, and, when insurance would not cover a calcium score CAT scan, I paid for it. My Agatston score was in the 26th percentile for men my age. So 74% of men had more calcification than I. I was not worried.

Fast forward about ten years. In my seventies now, I flew to my son’s wedding, and as I was getting ready to fly, I had a strange sensation in my chest. I would have gone to the hospital, but I would have missed the flight and my son’s wedding, very important to me. So I flew, and when I got back, went immediately to my primary care physician and he sent me back to the cardiologist for another stress test. Some abnormalities (minor, actually) showed up, so they immediately scheduled a nuclear stress test, I think it was the next day.

Result: major blockage, showing up under stress only. So I was able to get into cardiac rehab, and started an exercise program. I’m still doing that. No heart attack yet, I carry a pulse oximeter and  nitroglycerin just in case. I have never used it.

The cardiologist, of course, recommended two things: an angiogram and a statin. I declined the angiogram until I could become better informed. He understood and actually appreciated that. I obtained the statin prescription and on something like the first day, I accidentally took a double dose and felt miserable. It was a high dose. That’s meaningless, except that I realized I simply did not want to take the drug.

Statins function to lower cholesterol, primarily. There is a substantial rate of complications (and that is controversial and I am not convinced it has been adequately studied). However, statins are sold on the idea of a 30% reduction in risk. What is not said is that for people who have not had a heart attack, this may be a 1% absolute risk reduction (from 3% to 2%), and it appears that, at least in many studies, there is no reduction in death rate, which would imply that statins might be reducing heart attacks, all right, but participants were dying from something else instead.

I also looked into angiograms and the placement of stents. Having the procedure (which is quite invasive — and expensive!) apparently, for a relatively normal population, not having had a heart attack, does not improve survival rates. The procedure (angiogram with possible stent placement) can be life-saving if one is in critical condition, but may be overkill when one is merely at some level of risk from age and some level of arteriosclerosis.

I’ve mentioned some “facts” above. Are they facts? What do the studies actually show? I’ve been reading off and on about this for years, but have never done an organized study. That’s what I’m starting here. I’ve been following the blog of Dr. Malcolm Kendrick, a Scottish physician and very good writer, calling himself a sceptic. The pseudoskeptic trolls I’ve been following have attacked him, which is how I found him.

He encourages open discussion and criticism on his blog. The other day, there was a link placed to the Science Based Medicine blog, The Cholesterol Controversy, by Christopher Labos. It’s a recent post, February 15, 2019.

The subhead:

Why is cholesterol so much more controversial than the other cardiac risk factors? A review of cholesterol’s troubled and contentious history might help us understand where many of the cholesterol controversies originated… and why it’s time to let them pass into

He seems to be more willing to actually discuss the issues than many I’ve seen, which just assume the “consensus.” So I’m staring here.

Subpage studies


Subpage of JCMNS

Experiments and Methods in Cold Fusion

Volume 28, February 2019

Proceedings of the International Conference on the Application of Microorganisms for the Radioactive Waste Treatment
Busan, South Korea, May 2018

© 2019 ISCMNS. All rights reserved. ISSN 2227-3123

front matter includes Table of Contents and Preface by Shanghi Rhee.

An Experiment in Reducing the Radioactivity of Radionuclide (137Cs) with Multi-component Microorganisms of 10 Strains
Kyu-Jin Yum, Jong Man Lee, GunWoong Bahng and Shanghi Rhee
“Biological Transmutation” of Stable and Radioactive Isotopes in Growing Biological Systems
Vladimir Vysotskii and Alla Kornilova
Biological Transmutations
Jean-Paul Biberian
Nuclear Transmutations and Stabilization of Unstable Nuclei in the Cold Fusion Phenomenon
Hideo Kozima
Thermodynamic Prediction for Novel Environmental Biotechnologies of Radioactive Waste Water Purification
Oleksandr Tashyrev, Vira Govorukha, Nadiia Matvieieva and Olesia Havryliuk
Novel Biotechnologies for Purification of Radioactive Waste Water
Vira Govorukha, Oleksandr Tashyrev and Valery Shevel

Possibilities and perils

I just read an article that blew my mind. (Warning: paywall)

What Happens When Techno-Utopians Actually Run a Country | WIRED

Direct democracy! Universal basic income! Fascism!? The inside story of Italy’s Five Star Movement and the cyberguru who dreamed it up.

I will be blogging about it, but if we care to influence the future of the planet, we need to be aware of how the landscape has changed. It’s not just global warming, it’s not just a single populist leader, it is the development of fascism that masquerades as democracy.

I am very familiar with the “political philosophy” underpinning what the article is about, and wrote for years about the opportunity and the danger, and what it would take to create what I called direct/deliberative-representative democracy. Direct democracy on a large scale without protective structure is very, very likely to devolve into fascism, through the Iron Law of Oligarchy. Look it up if you are not familiar with it. Popular movements like term limits increase the power of the media and those who can buy the media. (Or, in this case, those who have developed the skill of manipulating popular, unprofessional social media. This is a current Very Big Story, about the 2016 U.S. Presidential election.)

There is no way around the Iron Law, but there are ways to harness it, but hardly anyone even recognizes the problem, much less solutions.

I may have been one of the writers who influenced the founder of that Italian movement; if not, it could have been one or more of a small group who pushed for similar ideas, such as Demoex in Sweden. This is stuff that is very appealing, but what is common is utter naivete about the dangers. The Italian experience demonstrates both the intense appeal and the depth of the danger.

“Leaderless” people are not free, they are in great danger of manipulation by people who have learned the lessons of mass psychology, and the behind-the-scenes founder of Five Star explicitly studied those concepts and used them to create personal power. Strong-Leader people are also not free, they are the slaves of the Leader. There is a synthesis possible, but it will not arise until the dangers are recognized and we pay attention to and develop structure that will ensure that we have the right to actually choose representatives we trust — and the right to take that delegation back at will if they lose the trust. The entire conventional system is based on win/lose, which defeats genuine chosen representation and becomes the dictatorship of the majority (or, often, worse, of a plurality). It can be done, but most people think and act, knee-jerk, from within the familiar, and strong-leader is familiar and so is direct democracy in small groups of highly interested people. More will be revealed.

The Production Of Helium In Cold Fusion Experiments

DRAFT of book chapter for review from ResearchGate, this may differ substantially from the final version: https://www.researchgate.net/publication/330496721_The_Production_Of_Helium_In_Cold_Fusion_Experiments

The Production Of Helium In Cold Fusion Experiments
Melvin H. Miles
College of Science and Technology
Dixie State University, St. George, Utah 84770, U.S.A.


It is now known that cold fusion effects are produced only by certain palladium materials made under special conditions. Most palladium materials will never produce any excess heat, and no helium production will be observed. The palladium used in our first six months of cold fusion experiments in 1989 at the China Lake Navy laboratory never produced any measurable cold fusion effects. Therefore, our first China Lake result were listed with CalTech, MIT, Harwell and other groups reporting no excess heat effects in the DOE-ERAB report issued in November 1989. However, later research using special palladium made by Johnson-Matthey produced excess heat in every China Lake D2O-LiOD electrolysis experiment. Further experiments showed a correlation of the excess heat with helium-4 production. Two additional sets of experiments over several years at China Lake verified these measurements. This correlation of excess heat and helium-4 production has now been verified by cold fusion studies at several other laboratories. Theoretical calculations show that the amounts of helium-4 appearing in the electrolysis gas stream are in the parts-per-billion (ppb) range. The experimental amounts of helium-4 in our experiments show agreement with the theoretical amounts. The helium-4 detection limit of 1 ppm (1000 ppb) reported by CalTech and MIT was far too insensitive for such measurements. Very large excess powers leading to the boiling of the electrolyte would be required in electrochemical cold fusion experiments to even reach the CalTech or MIT helium-4 detection limit of 1000 ppb helium-4 in the electrolysis gas stream.

My research on cold fusion at the China Lake Navy laboratory (Naval Air Warfare Center Weapons Division, NAWCWD) began on the first weekend following the announcement on March 23, 1989 by Martin  Fleischman and Stanley Pons. It was six months later (September 1989) before our group detected any sign of excess heat production. By then, research reports from CalTech, MIT, and Harwell had given cold fusion a triple whammy of rejection. Scientists often resorted to ridicule to discredit cold fusion, and some were
even saying that Fleischmann and Pons had committed scientific fraud.

Most palladium sources do not produce any cold fusion effects [1]. The palladium made by Johnson-Matthey (J-M) under special conditions specified by Fleischmann was not made available until later in 1989. I was likely one of the first recipients of this special palladium material when I received my order from Johnson-Matthey of a 6 mm diameter palladium rod in September of 1989. Our first reports of excess heat came from repeated use of the same two sections of this J-M palladium rod [1-3]. However, our final verification of these excess heat results came late in 1989, thus China Lake was listed with CalTech, MIT, Harwell and other groups reporting no excess heat effects in the November 1989 DOE-ERAB report [4].

These same two J-M Pd rods were later used in our first set of experiments (1990) showing helium-4 production correlated with our excess heat (enthalpy) results [5-7]. Two later sets of experiments at China Lake using more accurate helium measurements, including the use of metal flasks for gas samples, confirmed our first set of measurements [8].

Following our initial research in 1990-1991 on correlated heat and helium-4 production, other cold fusion research groups reported evidence for helium-4 production [9]. This report, however, will focus mainly on the research of the author at NAWCWD in China Lake, California during the years 1990 to 1995 [1,8].

1. First Set of Heat Helium Measurements (1990)

The proponents of cold fusion were being largely drowned out by cold fusion critics by 1990. In fact, the first International Cold Fusion Conference (ICCF-1) was held March 28-31, 1990 in Salt Lake City, Utah. I found this to be a very unusual scientific conference with a mix of cold fusion proponents, many critics, and the press. Most presentations were followed by unusual ridicule by critics in the question period with comments such as “All this sounds like something from Alice in Wonderland”. Two valid questions by critics, however, were: “Where are the Neutrons?” and “Where is the Ash?”. If the cold fusion reactions were the same as hot fusion reactions, as most critics erroneously thought, then the amounts of excess power being reported (0.1 to 5 W) would have produced a deadly number of neutrons (more than 1010 neutrons per second). Also, if there were a fusion reaction in the palladium-deuterium (Pd-D) system, then there should appear a fusion product – sometimes incorrectly referred to as ash. Some researchers, such as Bockris and Storms, were reporting tritium as a product, but the amounts were far too small to explain the excess enthalpy. The reported production of neutrons in cold fusion experiments was
even smaller (about 10-7 of the tritium).

Julian Schwinger, a Nobel laurate, suggested at ICCF-1 the possibility of a D+H fusion reaction that produces only helium-3 as a product and no neutrons [10]. Because of this, I considered measurements for helium-3 in my next experiments, but the mass spectrometer at China Lake was designed for only larger molecules made by organic chemists.

However, later in 1990, Ben Bush called to discuss both a possible temporary position at China Lake and my cold fusion results. He held a temporary position at the University of Texas in Austin, and the instrument there could measure helium-3 at small quantities. We worked out details in following telephone conversations about how to collect gas samples and ship them to Texas for both helium-3 and helium-4 measurements by their mass spectrometry expert. My next two experiments, fortunately, produced unusually large excess power effects for our first set of correlated heat and helium measurements [5-7].

These helium results were first published as a preliminary note [5], then in the ICCF-2
Proceedings [6], and eventually as a detailed publication [7]. There was no detectable
helium-3, but there was evidence for helium-4 correlated with the excess enthalpy. I had
never met Ben Bush and decided to code the gas samples with the birthdays of my family
members. My own measurements of excess power were recorded in permanent laboratory
notebooks before the samples were sent to Texas for analysis. These were single blind tests because Dr. Bush did not know how much, if any, excess power was being produced when a gas sample was collected. I am glad, in retrospect, that this was done because I later learned that Dr. Bush was gung-ho on proving cold fusion was correct. Scientists must always leave it completely up to experimental results to answer important scientific questions. It seems to me, on the other hand, that scientists at MIT and CalTech in 1989 were focused only on proving that cold fusion was wrong. There was a “Wake for Cold Fusion” held at MIT at 4 p.m. on June 16, 19891 even before their cold fusion experiments were completed [11].
When all results for this study were in (early 1991), I thought about how this research could be published quickly as a preliminary note. All research, except for the helium measurements, was done at China Lake. However, critics of cold fusion were prominent in 1991, and any publication from China Lake had to be first cleared by several management levels. This publication could be held up or even rejected for publication by Navy personnel at China Lake. As a solution, I had this manuscript submitted by Bush and
Lagowski at the University of Texas where they were listed as the first authors. A few months later, Dr. Ronald L. Derr, Head of the Research Department at China Lake, admonished me for the publication of this work from China Lake in this manner. However, Dr. Derr, along with my Branch Head, Dr. Richard A. Hollins, were among the few supporters of my cold fusion research at NAWCWD in 1991. Many others thought that such work damaged the reputation of this Navy laboratory.

1The flyer for this “Wake” at MIT ridiculed cold fusion with statements like “Black Armbands Optional” and “Sponsored by the Center for Contrived Fantasies”.

2. Analysis of the First Set of Helium Measurements.

Neither Ben Bush nor I really knew how much helium should be produced in my experiments by a fusion reaction, but my quick calculations showed that it might be quite small because of its dilution by the electrolysis gases. Recently, I have found an easier and accurate method to calculate the amount of helium-4 theoretically expected from the experimental measurements of excess power. It is known that D+D fusion to form helium-4 produces 2.6173712 x 1011 helium-4 atoms per second per watt of excess power. This is based on the fact that each D+D fusion event produces 23.846478 MeV of energy per helium atom from Einstein’s E = Δmc2 equation. Multiplying the number of atoms per second per watt by the experimental excess power in watts gives the rate of helium-4 production in atoms per second. The rate of electrolysis gases produced (D2+O2) per second is given by Molecules/s = (0.75 I/F) NA (1) where I is the cell current in Amps, F is the Faraday constant, and NA is Avogadro’s
1The flyer for this “Wake” at MIT ridiculed cold fusion with statements like “Black Armbands Optional” and “Sponsored by the Center for Contrived Fantasies”.

number. Note that the electrolysis reaction for one Faraday written as 0.5 D2O → 0.5 D2+0.25 O2 produces 0.75 moles of D2+O2 gases. The largest excess power in the first set of helium-4 measurements was 0.52 W at a cell current of 0.660 A. Therefore, the theoretical rate of helium-4 production divided by the rate of the D2+O2 molecules produced by the electrolysis gives a ratio (R) for helium-4 atoms to D2+O2 molecules as shown by Equation 2.

(2.617 x 1011 He-4 atoms/s W)(0.52 W)
[(0.75)(0.660 A)/(96,485 A.s/mol)] (6.022 x 1023 D2+O2 molecules/mol)

This calculation yields R = 44.0 x 10-9 or 44.0 parts per billion (ppb) of helium-4 atoms. This is the theoretical concentration of helium-4 present in the electrolysis gases for thisexperiment if no helium-4 remains trapped in the palladium. Normally, about half of this theoretical amounts of helium-4 is experimentally measured in the electrolysis gas.

The first set (1990) of our China Lake results are shown in Table 1. The theoretical amount of helium-4 expected (ppb) based on the measured excess power and the cell current is also listed. This is compared with the 1990 mass spectrometry results from the University of Texas in terms of large, medium, small or no observed helium-4 peaks. The dates for the gas sample collections are also listed. Two similar calorimeters (A,B) were run simultaneously, in series, in the same water bath controlled to ±0.01ºC [1-3].

Table 1. Results for the 1990 China Lake Experiments.

Sample Px(W) Theoretical He-4
Measured He-4
12/14/90-A 0.52a 44.0 Large Peak
10/21/90-B 0.46 48.7 Large Peak
12/17/90-A 0.40 42.4 Medium Peak
11/25/90-B 0.36 38.1 Large Peak
11/20/90-A 0.24 25.4 Medium Peak
11/27/90-A 0.22 23.3 Large Peak
10/30/90-B 0.17 18.0 Small Peak
10/30/90-A 0.14 14.8 Small Peak
10/17/90-A 0.07 7.4 No Peak
12/17//90-B 0.29b 30.7b No Peak
a I = 0.660 A. For all others I = 0.528 A
b Calorimetric Error Due to Low D2O Solution Level
c The University of Texas Detection Limit was about 5 ppb He-4 Based on Table 1

The theoretical helium-4 amounts generally follow the peak size reported experimentally for helium-4 except for the one sample where there was an apparent calorimetric error. Also, theoretical amounts of helium-4 vary only by a factor of three between the large and small peaks. Previous estimates [6-8] of the number of helium-4 atoms in these flasks were in error because the rate of helium production is directly proportional to the excess power. Finally, the detection limit for helium-4 measured at the University of Texas was about 5 ppb based on Table 1. This is in line with the ±1.1 ppb experimental error reported later by the U.S. Bureau of Mines laboratory in Amarillo, Texas [8]. The rate for atmospheric helium diffusing into these glass flasks was later measured to be 0.18 ppb/day, thus 28 days of flask storage would be needed to reach the 5 ppb detection limit. No correlation was found for the helium-4 amounts and the flask storage times [6,7]. Six control experiments using the same glass flasks and H2O+LiOH electrolysis produced no excess enthalpy at China Lake and no helium-4 was measured at the University of Texas [5-8].

Secondary experiments were also conducted for these heat-production cells. Dental films within the calorimeter was used to test for any ionizing radiation, and gold and indium foils were used to test for any activation due to neutrons. These dental films were clearly exposed by radiation in both calorimetric cells A and B [6,7]. A nearby Geiger counter also recorded unusually high activity during this time period. No activation of the gold or indium foils were observed, hence the average neutron flux was estimated to be less than 105 neutron per second. Similar dental film studies in the H2O+LiOH controls gave no film exposure and no other indications of radiation [6,7].

3. Experimental Measurement of Helium-4 Diffusion

One of the main questions raised by our first report in 1991 of the correlation between the excess heat and helium-4 production in our experiments [5-7] was the possible diffusion of helium-4 from the atmosphere into our glass collection flasks. This was certainly possible, but would the rate of such diffusion be fast enough to affect our results? I addressed this question in my presentation at ICCF-2 in Como, Italy where I suggested that since D2 also diffuses through glass, then the much greater outward diffusion of deuterium gas across the flask surface in the opposite direction might impede the small flow of atmospheric helium-4 into the flask. Experimental measurements of the rate of helium diffusion into these same glass flasks later answered these important questions. The rate of atmospheric helium-4 flowing into our glass flasks was too slow to have affected our first report on the heat/helium-4 correlations. These experiments also showed that large amounts of hydrogen or deuterium in the flask somewhat slow the rate of helium diffusion into the flask. Theoretical calculations using q = KP/d gave good agreement with the experiment measurements [1,5-7] where q is the permeation rate, K is the permeability for Pyrex Glass, P is the partial pressure of atmospheric helium-4 and d is the glass thickness
(d = 0.18 cm and A = 314 cm2 for our typical glass flask).

The results for eight experimental measurements of the helium-4 diffusion rate into the same glass flasks used in our experiments are presented in Table 2.

Table 2. Experimental Measurements of Helium-4 Diffusion into the Glass Flasks used at China Lake Conditions Laboratory
a He-4 Atoms/Day Ppb/Dayb
Theoretical q=KP/d 2.6 x 1012 0.23
N2 Fill HFO 2.6 x 1012 0.23
N2 Fill HFO 3.4 x 1012 0.30
N2 Fill RI 3.7 x 1012 0.32
D2O+O2 Fillc RI 1.82±0.01 x 1012 0.160
D2+O2 Filld RI 2.10±0.02 x 1012 0.184
D2+O2 Fille RI 2.31±0.01 x 1012 0.202
H2 Fillf RI 1.51±0.11 x 1012 0.132
Vacuumf RI 2.09±0.04 x 1012 0.183
aHFO (Helium Field Operations, Amarillo, Texas)
RI (Rockwell International, Canoga Park, California)
bBased on 1.141 x 1022 D2+O2 Molecules per Flask
cGlass Flask #5
dGlass Flask #3
eGlass Flask #4
fBoth Experiments Used Glass Flask #2

For our experimental condition of flasks filled with D2+O2, the mean helium-4 diffusion rate is 0.182±0.021 ppb/day. Thus, it would take a flask storage time of 28 days to just reach the helium-4 detection limit of about 5 ppb (see Table 1). The theoretical 44.0 ppb in Table 1 would require a flask storage time of 242 days to reach this amount of helium-4. Because of the large excess power measured, the flask storage time was not a factor for the results in Table 1. Also, the flasks filled with N2 had larger experimental rates for helium-4 diffusion than the flasks filled with the D2+O2 electrolysis gases. The various flasks had somewhat different values for helium-4 diffusion because it was unlikely that any two flasks would be exactly the same. Furthermore, filament tape was used on each Pyrex round-bottom flask to help prevent breakage during shipments. However, the measured helium-4 diffusion using the same glass flask in Table 2 for both a H2 fill and a vacuum show a significant slower diffusion rate for helium-4 for the flask filled with hydrogen [7]. The outward diffusion of D2 or H2 across the glass surface apparently does slow the inward diffusion of atmospheric helium-4.

4. Second set of Helium Measurements (1991-1992)

Unfortunately, our 6 mm diameter palladium rods from Johnson-Matthey were cut up for
helium-4 analysis, and it took nearly a year to find another palladium electrode that
produced excess heat2. This was a 1.0 mm diameter J-M wire, and the excess power was
small due to the much smaller palladium volume used (0.020 cm3 vs. 0.34 cm3). However,
Rockwell International provided significantly more accurate helium-4 measurement with
a reported error of only ±0.09 ppb [1,8]. Brian Oliver, who performed these studies, was
recognized as a world expert for helium-4 measurements. The helium-4 measurements
were carried out over a period of more than 100 days, thus the helium-4 results could be
accurately extrapolated back to the time of the gas samples collection [8]. This eliminated
any effect due to the diffusion of atmospheric helium-4 into the glass flasks. These were
double blind experiments because neither Rockwell International nor the China Lake
laboratory knew the results for both the excess power and helium measurements until this
study was completed and all results were reported to a third party.

The experimental and theoretical results of this set of experiments in 1991-1992 are presented in Table 3.
Table 3. Results for the Second Set of Experiments (1991-1992)
Sample Px (W) Theoretical He-4 (ppb) Experimental He-4
12/30/91-B 0.100a 10.65 11.74
12/30/91-A 0.050a 5.33 9.20
01/03/92-B 0.020b 2.24 8.50
I = 0.525 A
I = 0.500 A
cReported Rockwell error was equivalent to ±0.09 ppb

There is considerable information contained in this accurate helium-4 analysis by Rockwell International that supports a D+D fusion reaction producing helium-4 and 23.85 MeV of energy per helium-4 atom. First, Rockwell reported their results as the measured number of helium-4 atoms in each of the 500 mL collection flasks at the time of collection. These numbers were 1.34 x 1014, 1.05 x 1014, and 0.97 x 1014 helium atoms per 500 mL [8,12]. The reported error (standard deviation) by Rockwell was only ±0.01 x 1014 helium-4 per 500 mL. Therefore, there is a 29 σ effect between the two highest numbers and a 37 σ effect between the highest and lowest numbers. Except perhaps for the cold fusion field, any measurements that produce even 5 σ effects are considered to be very significant by the scientific community. Note that the numbers reported by Rockwell are also in the correct order for the excess power measured (Table 2) for this double-blind experiment.
If one finds palladium electrodes that produce large excess power effects, hang onto them! Also, do not use them for H2O controls.

The number of helium-4 atoms per 500 mL can be converted to ppb, as used in Table 3, by calculating the total number of gas molecules contained in the flask. From the Ideal Gas Equation, this number is (PV/RT)NA or 1.141 x 1022 molecules for our laboratory condition during the flask collection time (P=0.92105 atm, V=0.500 L, and T=296.15 K). In terms of ppb, the Rockwell reported error of ±0.01 x 1014 helium-4 atoms per 500 mL becomes about ±0.09 ppb. Later experiments using metal collection flasks established that the background helium-4 in our collection system was 5.1 x 1013 atoms per 500 mL or 4.5 ppb [1,8]. Based on theoretical calculations, the diffusion of helium-4 into our collection system was not due to any glass components, but rather due to the use of thick rubber vacuum tubing to make the connections to the collection flask and oil bubbler. We kept our calorimetric system and gas collection system at China Lake exactly the same for several years for the purpose of making comparisons between experiments done at different times. The correction for this background helium-4 actually helped to bring the Rockwell helium-4 measurements closer to theoretical values based on the D+D fusion reaction to form helium-4. This is shown in Table 4.

Table 4. Results For the Second Set of Experiments With Corrections For the
Background Helium-4 (4.5 ppb)
PX (W) Theoretical He4 (ppb)
Corrected He-4
He-4/sWc MeV/He-4
0.100a 10.65 7.24 1.8 x 1011 35
0.050a 5.33 4.70 2.3 x 1011 27
0.020b 2.24 4.00 4.7 x 1011 13
I = 0.525 A
I = 0.500 A
cTheoretical Value: 2.617 x 1011 He-4/sW
dTheoretical Value: 23.85 MeV/He-4
The corrected helium-4 measurements by Rockwell are reasonably close to expected values based on the D+D fusion reaction to form helium-4 as the main product. Only the results for an excess power of 0.020 W suggests a problem because the corrected experimental value (4.00 ppb He-4) is larger than the theoretical value (2.24 ppb Hel-4). This is not unexpected because 0.020 W is near the measuring limit for the calorimeter used. The correct experimental excess power may have been closer to 0.040 W3. Also, the rate of work done by the generated electrolysis gases (Pw) was not considered. This alone would add another 0.010 W to give 0.030 W for the excess power. This small Pw term is less important for higher excess power measurements.

3Using 0.040 W gives 2.4×1011 He-4/sW and 25 MeV/He-4

An example of the experimental calculation of He-atoms per Ws (or J) is presented in Equation 3 for the measured excess power of 0.100 W (I = 0.525 A).
(1.34 x 1014
-0.51 x 1014) He atoms/500 mL
(4644 s/500 mL)(0.100 W)
where 4644 seconds is the time required to generate 500 mL of D2+O2 electrolysis gases at a cell current of 0.525 A.
The value for MeV per helium-4 atom readily follows as shown by Equation 4.
[(1.8 x 1011 He-4/J)(1.602 x 10-19 J/eV)]-1 = 35 MeV/He-4 (4)
A mean value for the three experiments in Table 3 yields 25±11 MeV/He-4. Omitting the smallest excess power measured gives 30.5±5.0 MeV/He-4. The results given in Table 3 are reasonable considering the rather small excess power measured. This was probably due to the small volume of the palladium electrode (0.020 cm3). Typical excess power for the Pd/D system is about 1.0 W/cm3 of palladium for our current densities used [13]. The experimental corrected values for helium-4 compared to the theoretical amounts in Table 3 are 68% and 88% for the two largest values for excess power. There would likely be a smaller percent of helium-4 trapped in the palladium for the two small volume cathodes used.

5. An Analysis of the Third Set of Helium Measurements (1993-1994)

Many cold fusion critics refused to accept the correlation of excess heat and helium-4 production in our experiments because of the diffusion of atmospheric helium into glass containers. Therefore, metal flasks were used in place of glass flasks to collect gas samples from our experiments for helium analysis. The use of these metal flasks prevented the diffusion of atmospheric helium into the flasks after they were sealed. Even the flasks valves were modified to provide a metal seal by using a nickel gasket. All other components of the cells, gas lines, and oil bubblers remained the same in order to relate these new measurements to the previous measurements using glass flasks [1]. However, it was difficult to get the large excess power effects observed in our first set of measurements that used the special 6 mm J-M palladium rods. The helium-4 analyses for these experiments using the new metal flasks were performed by the U.S. Bureau of Mines laboratory at Amarillo, Texas. This was another laboratory with special skills in making such measurements. By this time, we were using four similar calorimeters (A,B,C,D) in two different water baths for calorimetric studies.

Table 5 presents helium-4 results for seven experiments that produced small excess power effects. The theoretical calculated amounts expected for helium-4 are also presented.

Measurements in similar experiments where no excess power was measured gave a background level of 4.5±0.5 ppb (5.1×1013 He-4 atoms) for our system [1].

Table 5. Hellium-4 Measurements Using Metal Flasks
Theoretical He-4
Experimental He-4
0.120a 13.4 9.4±1.8
0.070a 7.8 7.9±1.7
0.060 8.4 6.7±1.1
0.055 7.7 9.0±1.1
0.040 5.6 9.7±1.1
0.040 5.6 7.4±1.1
0.30a 3.4 5.4±1.5
I = 0.500 A. For all others I = 0.400 A

It should be noted that the largest excess power in Table 4 (0.120 W) was for a palladium boron rod (0.6 x 2.0 cm) made by Dr. Imam at the Naval Research Laboratory (NRL). We had been testing palladium materials made by NRL for several years, but none had produced a significant excess enthalpy effect. However, seven of eight experiments using Pd-B rods from NRL produced significant excess heat effects before this Navy program on palladium-deuterium systems ended in June of 1995 [1]. Most of the other excess power effects reported in Table 5 were produced by J-M palladium materials. Five experimental values for helium-4 in Table 5 are larger than the theoretical values reported. Assuming that the excess power reported is correct, then this is readily explained by the need to subtract the background of 4.5 ppb from each experimental value. These results are shown in Table 6 along with the electrode volume and the experimental rate of helium-4 production per second per watt of excess power.

Table 6. Background corrections For Helium-4 Measurements Using Metal Flasks
Corrected He-4
Percent of
Theoretical %
Electrode Volume
0.120 4.9 37 0.57 1.0 x 1011
0.070 3.4 43 0.63 1.1 x 1011
0.060 2.2 26 0.04 0.7 x 1011
0.055 4.5 59 0.51 1.5 x 1011
0.040 5.2 93 0.02 2.4 x 1011
0.040 2.9 52 0.01 1.4 x 1011
0.030 0.9 27 0.29 0.7 x 1011
a4.5 ppb subtracted from reported He-4 measurements

Because of the small amounts of excess power reported in Tables 5 and 6, it is difficult to reach any strong conclusions from the use of metal flasks except that helium-4 production is observed in experiments that produce excess power and no helium-4 production above background is measurable in experiments with no excess power. Furthermore, both the uncorrected and corrected experimental amounts of helium-4 are close to the theoretical amounts expected. Larger excess power, such as in our first set of helium-4 measurements would be needed before more definite conclusions could be made. Perhaps these results suggest that a larger percent of helium-4 is released into the gas phase for the palladium cathodes that have the smaller volume of material.

6. Discussion of China Lake Heat/Helium-4 Results

Some critics claimed that our results must be wrong because the experimentally measured helium-4 is only in the ppb range. However, this manuscript shows that the theoretical amounts of helium-4 for our experiments should be in this ppb range. Many other critics attribute our heat and helium-4 results to some form of contamination from atmospheric helium-4 normally present in air at 5.22 ppm [12]. Such contamination sources would be random and equally likely to be found in controls or experiments which show no excess enthalpy results. In summary, for all such experiments conducted at NAWCWD (China Lake), 12 out of 12 produced no excess helium-4 when no excess heat was measured and 18 out of 21 experiments gave a correlation between the measurements of excess heat and helium-4. The three failures either had a calorimetric error or involved the use of a different palladium material, i.e. a palladium-cerium alloy that perhaps traps most of the helium-4 produced. An exact statistical treatment that includes all experiments shows that the probability is only one in 750,000 that the China Lake set of heat and helium measurements (33 experiments) could be this well correlated due to random experimental errors [1]. Furthermore, the rate of helium-4 production was always in the appropriate range of 1010 to 1012 atoms per second per watt of excess power for D+D fusion or other likely nuclear fusion reactions that produce helium-4 [1,8].
All of our theoretical calculations for helium-4 production have assumed that the main fusion reaction is D + D → He-4 + 23.8 MeV. However, other fusion reactions producing helium-4 could also be considered such as D + Li-6 → 2 (He-4) + 22.4 MeV or D + B-10 → 3 (He-4) + 17.9 MeV. Neither of these two possible reactions seem to fit well with our experimental measurements. Both reactions lead to large increases in the theoretical amounts of helium-4 for each experimental measurement of excess power. For example, the D + B-10 reaction would increase the theoretical amount of helium-4 by a factor of 3.991. In Table 3, the theoretical amount of helium-4 corresponding to PX = 0.100 W would be 42.50 ppb rather than 10.65 ppb. For likely fusion reactions that produce helium4, the D + D reaction seems to fit best with our experimental results. Other proposed fusionreactions produce less than 23.8 MeV of energy per helium-4 atom. At about the same time period of our first heat and helium measurements in 1990, two different theories were proposed that predicted helium-4 as the main cold fusion product and that this helium-4 would be found mostly outside the metal lattice in the electrolysis gas stream. These two independent theories came from Scott and Talbot Chubb [14] and Giuliano Preparata [15]. Both Scott Chubb and Preparata called me shortly after our first publication on correlated excess heat and helium-4 in 1991, and Preparata soon made a visit to my China Lake laboratory. I first met Scott and his uncle, Talbot Chubb, at ICCF2 in Como, Italy, and our friendship lasted many years. Some of the most boisterous ICCF moments involved loud debates between Scott Chubb and Preparata over their two theories.

7. Related Research By Other Laboratories

There are presently more than fifteen cold fusion groups that have identified helium-4 production in their experiments. A summary for these groups reporting helium-4 has been reported elsewhere by Storms [16]. Publications by Bockris [17], Gozzi [18] and McKubre [19] relate closely to our electrochemical cold fusion studies at China Lake. McKubre and coworkers at SRI report on several different experiments using three different calorimetric methods that gave a strong time correlation between the rates of heat and helium production [19]. Using sealed cells, the helium-4 concentration exceeded that of the room air. These SRI experiments gave a near-quantitative correlation between heat and helium-4 production consistent with the fusion reaction D + D → He-4 + 24 MeV (lattice). Special methods were used by SRI to remove sequestered helium-4 from the palladium cathode [19]

8. The CalTech and MIT Helium-4 Experiments in 1989

Both CalTech and MIT looked for helium-4 production in the electrolysis gases in their 1989 experiments and reported that there was none [20,21]. However, both institutionsalso reported that they found no excess enthalpy. We have never observed any helium-4 production in our experiments when there was no measurable excess heat. There were actually some signs of small excess heat in both the CalTech and MIT experiments, but these were zeroed out either by changing the cell constant or by shifting experimental data points [22,23]. Major calorimetric errors were also present in the Cal Tech and MIT publications [22,23]. Nevertheless, the reported helium-4 detection limit by both CalTech and MIT was one part per million (ppm) or 1000 ppb. By using Equations 1 with R = 1000 ppb (1.0×10-6), the excess power would have to be 8.94 W. From Table 1, 1000 ppb helium-4 would require more than 20 times the highest excess power listed for our experiments or about 10 W. With such a large excess power, most calorimetric cells would be driven to boiling just by the fusion energy alone. Such large amounts of excess enthalpy would be very obvious even without the use of calorimetry, but the amounts of helium-4 produced would barely reach the detection limit reported by these two prestigious universities. Why was such a glaring error in the CalTech and MIT results missed by the reviewers for these publications? It seems like almost anything was accepted by major journals, such as Nature and Science, in 1989 if it helped to establish the desired conclusion that reports of cold fusion were not correct.


Long term support for my cold fusion research has been received from an anonymous fund at the Denver Foundation through the Dixie Foundation at Dixie State University. An Adjunct faculty position at the University of Laverne and a Visiting Professor at Dixie State University are also acknowledged.

1. M.H. Miles, B.F. Bush and K.B. Johnson, Anomalous Effects in Deuterated Systems, Naval Air Warfare Center Weapons Division Report, NAWCWPNS TP8302, September 1996, 98 pages. See http://lenr-canr.org/acrobat/MilesManomalousea.pdf.
2. M.H. Miles, K.H. Park and D.E. Stilwell, “Electrochemical Calorimetric Evidence For Cold Fusion in the Palladium-Deuterium System”, J. Electroanal. Chem., 296, 1990, pp. 241-254. Britz Miles1990b
3. M.H. Miles, K.H. Park and D.E. Stilwell, “Electrochemical Calorimetric Studies of the Cold Fusion Effect” in The First Annual Conference in Cold Fusion Conference Proceedings, March 28-31, 1990, Salt Lake City, Utah, pp. 328-334.
4. Cold Fusion Research – A Review of the Energy Research Advisory Board to the United States Department of Energy, John Huizenga and Norman Ramsey, Cochairmen, November 1989, p. 12.
5. B.F. Bush, J.J. Lagowski, M.H. Miles and G.S. Ostrom, “Helium Production During the Electrolysis of D2O in Cold Fusion Experiments”, J. Electroanal. Chem., 304, 1991, pp. 271-278. Britz Bush1991b
6. M. H. Miles, B.F. Bush, G.S. Ostrom and J.J. Lagowski, “Heat and Helium Production in Cold Fusion Experiments”, in The Science of Cold Fusion Proceedings of the II Annual Conference on Cold Fusion, T. Bressani, E. Del Guidice and G. Preparata, Editors, Italian Physical Society, Bologna, Italy, 1991, pp. 363-372. ISBN 88-7794-045-X.
7. M.H. Miles, R.A. Hollins, B.F. Bush, J.J. Lagowski and R.E. Miles, “Correlation of Excess Power and Helium Production During D2O and H2O Electrolysis Using Palladium Cathodes”, J. Electroanal. Chem., 346, 1993, pp. 99-117. Britz Miles1993.
8. M.H. Miles, “Correlation of Excess Enthalpy and Helium-4 Production: A Review”, in Condensed Matter Nuclear Science, ICCF-10 Proceedings 24-29 August 2003, P.L. Hagelstein and S.R. Chubb, Editors, World Scientific, Singapore, 2006, pp. 123-131. ISBN 981-256l-564-7. lenr-canr version.
9. M.H. Miles and M. C. McKubre, “Cold Fusion After a Quarter-Century: The Pd/D System” in Developments in Electrochemistry: Science Inspired by Martin Fleischmann, D. Fletcher, Z-Q Tian, and D.E. Williams, Editors, John Wiley and Sons, U.K., 2014, pp. 245-260. ISBN 9781118694435.
10. J. Schwinger, “Nuclear Energy in an Atomic Lattice” in The First Annual Conference on Cold Fusion: Conference Proceedings, March 28-31, 1990, Salt Lake City, Utah, pp. 130-136.
11. S.B. Kirvit and N. Winocur, The Rebirth of Cold Fusion: Real Science, Real Hope, Real Energy, Pacific Oaks Press, Los Angeles, USA, 2004, p. 84. ISBN 0-9760545-8-2.
12. N. Hoffman, A Dialogue On Chemically Induced Nuclear Effects: A Guide for the Perplexed About Cold Fusion, American Nuclear Society, LaGrange Park, Illinois, 1995, pp. 170-180. ISBN 0l-l89448-558-X.
13. M. Fleischmann, S. Pons, M.W. Anderson, L.J. Li and M. Hawkins, “Calorimetry of the Palladium-Deuterium-Heavy Water System”, J. Electroanal. Chem., 287, 1990, pp. 293-348. (See Fig. 12, P. 319). lenr-canr copy.
14. S.R. Chubb and T.A. Chubb, “Lattice Induced Nuclear Chemistry”, in Anomalous Nuclear Effects in Deuterium/Solid Systems, S.E. Jones, F. Scaramuzzi and D. Woolridge, Editors, American Institute of Physics, New York, USA, 1990, pp. 691-710. ISBN 0-88318-l833-3.
15. G. Preparata, QED Coherence in Matter, Chapter 8: “Towards a Theory of Cold Fusion Phenomena”, World Scientific, Singapore, 1995, pp. 153-178.
16. E. Storms, The Explanation of Low Energy Nuclear Reaction: An Examination of the Relationship Between Observation and Explanation, Infinite Energy Press, Concord, N.H., USA, 2014, pp. 28-40. ISBN 978-1-892925-10-7.
17. C.-C. Chien, D. Hodko, Z. Minevski and J.O.M. Bockris, “On an Electrode Producing Massive Quantities of Tritium and Helium”, J. Electroanal. Chem., 338, 1992, pp. 189-212.
18. D. Gozzi, R. Caputo, P.L. Cignini, M. Tomellini, G. Gigli, G. Balducci, E. Cisbani, S. Frullani, F. Garibaldi, M. Jodice and G.M. Ureiuoli, “Quantitative Measurements of Helium-4 in the Gas phase of Pd+D2O Electrolysis”, J. Electroanal. Chem., 380, 1995, pp. 109-116.
19. M. McKubre, F. Tanzella, P. Tripodi and P. Hagelstein, “The Emergence of a Coherent Explanation for Anomalies Observed in D/Pd and H/Pd Systems: Evidence for 4He and 3H Production” in Proceedings of the 8th International Conference on Cold Fusion, F. Scaramuzzi, Editor, Italian Physical Society, Bologna, Italy, 2000, pp. 3-10. ISBN l88-7794-256-8.
20. N.S. Lewis, C.A. Barnes, M.J. Heben, A. Kumar, S.R. Lunt, G.E. McManis, G.M. Miskelly, R. M. Penner, M.J. Sailor, PG. Santangelo, G.A. Shreve, B.J. Tufts, M.G. Youngquist, R.N. Kavanagh, S.E. Kellogg, R.B. Vogelaar, T.R. Wang, R. Kondrat and R. New, “Searches for Low-Temperature Nuclear Fusion of Deuterium in Palladium”, Nature, 340, 1989, pp. 525-530.
21. D. Albagli, R. Ballinger, V. Cammarata, X. Chen, R.M. Crooks, C. Fiore, M.P.S. Gaudreau, I. Hwang, C.K. Li, P. Lindsay, S.C. Luckhardt, R.R. Parker, R.D. Petrasso, M.O. Schloh, K.W. Wenzel and M.S. Wrighton, “Measurements and Analysis of Neutron and Gamma-Ray Emission Rates, Other Fusion Products, and Power In Electrochemical Cells Having Pd Cathodes”, J. Fusion Energy, 9, 1990, pp. 133-148.
22. M.H. Miles, B.F. Bush and D. Stilwell, “Calorimetric Principles and Problems in Measurements of Excess Power During Pd-D2O Electrolysis”, J. Physical Chem., 98, 1994, pp. 1948-1952.
23. M.H. Miles and M. Fleischmann, “Twenty Year Review of Isoperibolic Calorimetric Measurements of the Fleischmann-Pons Effect”, in Proceedings of 14th International Conference on Cold Fusion (ICCFf-14), D.J. Nagel and M.E. Melich, Editors, University of Utah, Salt Lake City, U.S.A., 2008 Volume 1, pp. 6-10. (See also http://lenr-canr.org/acrobat/MilesMisoperibol.pdf).

The moment of truth has already passed

Mats Lewan continues to believe, long after the frauds of Andrea Rossi became crystal clear. From his blog, An Impossible Invention:

The moment of truth is getting close with launch on January 31st

“An Impossible Invention” is the title of Lewan’s book about Rossi and the “E-cat.” The reference is to the alleged impossibility of a device, an “energy catalyzer,” to generate heat from nickel and hydrogen. Lewan, a science journalist originally, was right, my opinion, to treat the “invention” as “possible,” not “impossible.” However, the problem isn’t impossibility, it is that Rossi was shown, by incontrovertible evidence in the trial, Rossi v. Darden, to have lied repeatedly. Case guide. 

On January 31, 2019, inventor and entrepreneur Andrea Rossi will hold an online presentation on the commercial launch of his heating device, the E-Cat. Thereby, the moment of truth is approaching for the carbon free, clean, abundant, cheap, and compact energy source that could potentially replace coal, oil, gas, and nuclear, and also solve the global climate crisis.

This is fluff. The moment of truth passed long ago. Rossi claimed to have a 1 MW reactor ready for sale before the end of 2011. That reactor was actually purchased by Industrial Heat, for $1.5 million, and delivered in 2013. With that, and a payment of $10 million, Rossi also agreed to disclose whatever was needed to build the reactors, and to license the technology to Industrial heat, for regions covering half the planet. In addition, subject to a “guaranteed performance test,” IH was to pay Rossi $89 million more. Rossi remained free to market or use the technology independently in the other half of the world.

It appears that Lewan has refused or failed to read the evidence from that trial, consisting of documents, almost entirely unchallenged, plus depositions under oath. We can assume that the unchallenged evidence is authentic, there are detailed responses from both sides, in motions to dismiss and answers to those.

The trial began, the jury was seated, and opening arguments were made. It was obvious to me how this was going to go. Rossi’s claim for $89 million was going to be rejected, for many reasons, IH was not going to be able to recover their investment paid to Rossi (because of estoppel), but IH would be able to claim fraud from the “Doral test,” and be able to collect damages from Rossi and those who assisted him perpetrate the fraud.

Obviously, Lewan could dispute that, but not reasonably unless he actually looks at the evidence, evidence that I studied and documented intensely, in order to make it available.

Since I started reporting on Andrea Rossi’s E-Cat technology in 2011, he always told me that his main goal, and the only thing that would convince people about the controversial physical phenomenon it was built on, would be to put a working product on the market.

What is truly odd about Lewan is that he says this, but actually ignores it. There was an allegedly “working product” on the market in 2011, with a price of $1.5 million, and it was purchased by an eager customer, IH. The guaranteed performance test did not take place in a timely fashion. Rossi blames IH for that, but the evidence shows otherwise, but Rossi then convinced IH to allow the reactor to be installed in Florida for a sale of power to a “customer” he had found, and he argued that an independent customer would be more convincing as a demonstration than what IH had proposed, an installation in North Carolina in a related company.

And Rossi clearly represented that the customer was actually Johnson-Matthey, Rossi’s emails show how he then attempted to create plausible deniability. A jury would have seen right through that. The customer was, in fact, a company set up by Rossi’s attorney, Johnson, who was also the President of Leonardo Technologies, Rossi’s Florida company. There was no “chemical company” other than Rossi’s activity, he controlled it entirely.

But if the reactor worked, so what? At least that is what many on Planet Rossi think. IH claimed that they had been unable to create any success with Rossi reactors, other than what appeared in some tests, later considered to be artifact (such as the Lugano test: IH had made that reactor).

This was the ultimate market test. IH was not about to pay $89 million for a “test” that did not satisfy the terms of the Agreement, but, because, the thinking would go, perhaps Rossi, known to be paranoid, had not disclosed to them the “secret.” So, having paid Rossi $11.5 million (and more in various ways), they would have wanted to keep the license, just in case it turned out to work.

They had four or five lawyers sitting there in the trial in Miami, it was costing them millions of dollars. They might not have been able to recover their legal costs, and there would be other reasons to avoid a trial. They are working to support inventors, and prosecuting a fraud claim against an inventor would not be the kind of publicity they would want.

So when Rossi, having claimed for a year that he was going to wipe the floor with Darden and Industrial Heat, proposed a walk-away, that no money change hands, he gives up his $89 million claim, and they give back the reactors (there were actually two 1 MW plants plus other prototypes), and the license was cancelled, they accepted.

They knew more about the Rossi technology than anyone other than Rossi. They had worked for about three years trying to get it to work. If it worked even modestly well, it would have been worth many billions of dollars, maybe trillions. With that knowledge, instead of spending a few million more, they chose to walk away, and focus on other LENR technology.

To me, this is beyond-a-reasonable-doubt evidence that Rossi technology was worthless. And the kicker: After the case settled, Rossi had people screaming for a plant, and he had two of them. If the technology actually worked, he could have installed it in a real customer’s facility, or could have sold heat to heating co-ops in Sweden. He’d have been making money hand over fist.

Instead, he dismantled the plants, destroying them, and focused on his “improved product,” which is what the upcoming demo is about.

Now, eight years later, after events taking unexpected and amazing turns which I told in my book An Impossible Invention and in this blog, Rossi claims to be ready to do so. His plan is to sell heat from remotely monitored devices at a price per kWh 20 percent below market price, with no carbon emissions from the operation of the devices.

The book did not cover the revealed information about the IH/Rossi affair. He has mentioned it on the blog, with shallow, very incomplete coverage that gives full voice to Rossi deceptive descriptions. Lewan has become a Rossi shill.

The Doral installation was a sale of power at $1000 per megawatt-day. So he already had, over eight years ago, a plant that could be installed to do what he now “plans” to do. Unless he was lying, then, and if he was lying then, why would we imagine he is not lying now?

(Note: The business model of selling a service rather than a product is a strong megatrend driven by digitalisation and by internet of things, making remote monitoring more effective, and it is already used by e.g. Rolls-Royce and GE, selling flight hours rather than aero engines).

This is basically irrelevant. Software is also licensed, not sold, etc.)

While this already implies a substantial cost-saving for the customers, it is most probably only the start of what the E-Cat technology can provide ahead, if it works as claimed.

There is no news here, only a “plan” which is not binding on anyone. On what basis does Lewan claim “probable.” Yes, he hedges it, “if it works as claimed.” Does he attempt to assess the odds of it working? Would past performance be a way of assessing this? Some who has failed many times to deliver what he promised, how much credence should be placed on new promises, in advance of a independently testable product?

At the online presentation (more info at http://www.ecatskdemo.com) Rossi plans to show a two-hour video of a device already in operation, reportedly heating an industrial premises of about 250 square meters in the US to 25°C since Nov 19, 2018. At the presentation, he will provide details regarding the commercial launch, but here is what I have been told and what I have concluded so far:

We know that what Rossi says is utterly unreliable. Does Lewan know that? Has he looked at the evidence, or does he just run on his gut?

A demonstration like that described can be faked six ways till Sunday. Rossi claimed that the reactor in Florida actually delivered a megawatt for most of the one-year period, based on measurements that he controlled, completely.

The problem was that a megawatt in that warehouse (is this the same “industrial premises”?), given the lack of a powerful heat exchanger, would have made it uninhabitable, fatal to occupants. That was one of the facts to be brought out at trial.

Rossi, last minute, as discovery was closing, contradicting what he had written on his blog for a year, claimed to have made a heat exchanger, didn’t keep receipts or take photographs, and he used the labor of guys who drive around in trucks looking for work, and … it would have had to have been there for the whole year, without anyone visiting noticing it, and it would have been noisy as hell and very visible.

No, he lied again, this time under oath, so that’s why his attorney had little trouble convincing him to settle if he could. He was facing not only losing millions of dollars, but also a possible criminal prosecution for perjury. Rossi was used to lying to the public, which is not necessarily illegal. He was playing a new game in U.S. federal court, where lying is a Very Bad Idea.

Lewan then goes on to give the alleged characteristics of the E-Cat SK. It is all “what he has been told,” and he reports what he was told with no sign of caution or skepticism. Lewan has had enough experience with Rossi to know he can be deceptive. This is my theory: if he were to ask inconvenient questions, he’d lose his access to Rossi. And he’s now made it a business, selling the book, which he is planning to update.

These characteristics are entirely Rossi Says. When we talk about generations of development of devices (Lewan calls the SK the “fourth generation”), it’s assumed that the earlier generations worked and the later generations are improved. If in mercato veritas, what is the truth of the earlier generations?

Bottom line, they were worthless. If they actually worked, they were worth, even as prototypes, at least hundreds of millions of dollars. The market has spoken the truth, but Lewan is ignoring it.

Lately, I have reported little on the E-Cat, simply because there has been essentially no new information that could be confirmed. Also in this case, in theory we will not be able confirm any of the claims presented, specifically since the existing customer will not be disclosed at the presentation on Jan 31, as far as I know.

There was a great deal of information revealed in 2016, in the trial. Lewan ignored it, relying only on what Rossi told him, apparently. Now, we still have no verifiable information. So why would January 31 be the “moment of truth”? Why is Lewan hyping this non-event, where Rossi will just present more smoke and mirrors?

But let’s assume that the there’s no working E-Cat device. Then either Rossi is fooling himself, and there’s nothing that makes me believe this now, or it’s a fraud, which hardly makes any sense at this point.

We already know that Rossi lies and that if the Doral plant worked, it was not working at anything like the level claimed. If it were a weak technology, but working, IH would have held onto it fiercely. They could afford it. (Prepping for the trial, Rossi claimed that IH wasn’t paying because they didn’t have the money to pay, but, in fact, IH had lined up $200 million ($150 million beyond what was already invested in other technology), plenty to pay Rossi and have money for development, but … they were not about to spend that when the frikkin’ reactors didn’t work!

It wasn’t even a weak technology. Before they made the deal with Rossi, they knew Rossi had a checkered past, but they decided they needed to find out. So they found out. It didn’t work.

It also “hardly made any sense” that a fraud would sue their defrauded customer. But he did. Basically, Lewan appears to have no idea how Rossi might actually think and operate, he has ignored the experience of those who worked closely with him for years.

In the fraud case, the E-Cat SK would be an electric heater consuming as much power as it outputs. But after at least a decade of hard work, without asking money from any third party, having earned USD11.5M from his ex US partner Industrial Heat, why would Rossi get back now and sell heat at a loss? To a customer that would immediately discover the fraud by looking at the electricity consumption of the device?

This is absolutely appalling. Rossi asked for and got funding from Ampenergo, so when IH bought the license from Rossi, Ampenergo was part of the deal, signed on, and IH paid Ampenergo millions in addition to what they paid Rossi. And then Rossi not only asked for and received $11.5 million from IH, he was also demanding $89 million. In Doral, there was no customer, but the fake customer agreed to pay $1000 per day for power, and Rossi approved invoice requests for IH to issue for those amounts. IH wasn’t convinced that there was a real power sale; for whatever reason, they didn’t issue those invoices, but the customer had no income, no business, so who would have paid those invoices?

Obviously, Rossi was willing to pay invoices, and it would then have strengthened his case to collect the $89 million. Spending $360,000 to gain $89 million? Lewan has the brain of a cockroach.

(Sorry, cockroaches, you are smarter than that.)

We don’t know anything about the conditions of a power sale. We don’t know how large the container for the reactor is. It must be large enough to protect the reactor from intrusion, and what kind of power source could be inside? We don’t know. This is all speculation, not news. Bottom line, a sale of power could be a fake demonstration of power generation, and, in addition, what if the “customer” is in collusion with Rossi? What would be the goal? Most likely, to gain investment.

Let’s suppose this is a 40 KW reactor.Say that power costs 10 cents/kW-h, that’s $4 per hour, $48 per day if it is 24/7, or under $18,000 per year, if the input power were free. Rossi could easily afford that for a time, and being able to report a satisfied customer — and he could create more than one –, how much more investment could he obtain?

(In this scenario, Rossi could smuggle fuel into the reactor, say propane, which would fuel an ordinary water heater.. So he could have apparent input power far below the heat output. He would be able to charge 80% of the going rate for heat, so, yes, he would be losing money, but not nearly as much as it might seem. Ponzi scheme!)

Clearly, only when at least one customer, having used the heat from the E-Cat SK for some time, will speak publicly about the service, the moment of truth will arrive.

No. There was “one customer” in Florida, apparently an independent company, with a lawyer representing it. In fact, it was a blind trust, in fact, it was not independent, and did not, contrary to the installation agreement with IH, measure the heat delivered independently. Lewan doesn’t think of the possible problems because he has paid no attention to what actually happened in Florida.

I looked above, and Lewan did hedge his claim. The moment of truth is not January 31. It is rather “the moment of truth is getting close with launch on January 31.” Except this is not a “launch.” With a product launch, the product becomes available. Is a product becoming available?

Once again, Rossi claimed an available product, a “1 MW reactor” in 2011. So was that “close to launch”? Lewan is more like “out to lunch.”

Meanwhile, everything else that I have observed and witnessed during these eight years, including my own measurements on the previous E-Cat versions, and the one-year test of a one megawatt plant in Doral, FL, during which Rossi started developing the E-Cat QX with its electronic/electromagnetic control system, indicates that the E-Cat is a working device, although many would call it An Impossible Invention.

About that “one year test” in Florida, it didn’t work, it was fraud. “Impossible Invention” is totally irrelevant. All the prior tests had glaring defects. Lewan was present for the Hydro Fusion test, which failed, and at which Rossi argued that they were not measuring input power correctly. Lewan argued with him, apparently think that this was just an honest mistake. But if Rossi could make that mistake with the Hydro Power test, how about with his own? Again and again, basic problems existed with the tests, never resolved because Rossi kept changing the device operation, so a possible artifact in one test could not be verified (or otherwise) in the next.

This is all obvious to many, many observers, so why not to Lewan?

By the way, I would like to share my impression that the groundbreaking control system of the E-Cat QX and the SK, is the result of a kind of dreamteam consisting of the genius Andrea Rossi, with elusive and creative ideas about physics and about what he thinks could be possible, and of electric engineer and computer scientist Fulvio Fabiani, not only being an expert on electronics but also being capable of interpreting Rossi’s wild and hard-to-grasp ideas, transforming them into real electronic circuits actually performing the job Rossi had in mind.

What a flack! Fabiani played a role in Florida, and I’m not going to go over it, but he was in line to lose substantial sums from his professional incompetence. He destroyed evidence belonging to IH.

I will develop this story further in the updated third edition of my book, which I hope to be able to conclude within a year or so, once the moment of truth has arrived.

And when the moment arrives, the E-Cat technology will most probably start providing clean, cheap, abundant, and sustainable energy to everyone in the world, in combination with solar and wind (which are a long way from replacing fossils on their own, and furthermore also require problematic large scale world-wide chemical battery implementations for energy storage).

Until then, the champagne remains on ice. And when I open it, I will be thinking of Sven Kullander and of late Prof. Sergio Focardi who played a fundamental role, helping Rossi to develop the E-Cat technology.

And Lewan has announced (twice, cancelled twice) a New Energy conference, featuring Rossi technology. He has lost all credibility. Here are his announcements:

UPDATE: The New Energy World Symposium was postponed in March 2017, waiting for an upcoming commercial launch of LENR based power. Read more here.

UPDATE 2: An online presentation regarding commercial launch of LENR based power will be held on January 31, 2019. Please get back to this blog for a report shortly.

I’m happy to announce that registration for the New Energy World Symposium is now open, with an Early Bird discount of EUR195 valid until February 17, 2018.

He knows that January 31 is unlikely to be the “moment of truth.” So why is he plowing ahead? (and this. scheduled for June, 2019, was also postponed indefinitely)


Andrea Rossi today published, on ResearchGate, a “preprint,” E-Cat SK and long range particle interactions. This is a theoretical paper standing on unverifiable experimental results, but it does disclose some data not seen before.  The paper begins:

The E-Cat technology poses a serious and interesting challenge to the conceptual foundations of modern physics.

There is no challenge until there are confirmed experimental results. Previous reports of SK performance were based entirely on RossiSays, with no verification allowed of necessary measurements. The device demonstrated in Stockholm was periodically stimulated with a high voltage, which would strike a plasma, which would then have low resistance. That strike would be relatively high voltage and would input power into the system. No measurements were allowed of the full input power, or, in fact, even of operating power, i.e., both the voltage and current in steady state operation.

This paper gives this description:

5 Experimental Setup

The plausibility of these hypotheses is supported by a series of experiments made with the E-cat SK. The E-cat SK has been put in a position to allow the eye of a spectrometer view exactly the plasma in a dark room: an ohm-meter has measured the resistance across the circuit that gives energy to the E-Cat; the control panel has been connected with an outlet with 220 V , while from the control panel departed the two cables connected with the plasma electrodes; a frequency meter, a laser and a tesla-meter have been connected with the plasma for auxiliary measurements; a Van der Graaf electron accelerator (200 kV ) has been used for the examination of the plasma electric charge. Other instruments used in the experimental
setup: a voltage generator/modulator; two oscilloscopes, one for the power source and one for monitoring the energy consumed by the E-Cat; Omega thermocouples to measure the delta T of the cooling air; IR thermometer; a frequency generator.

There are no useful details in this. What was the experimental procedure? In what is a plasma created? How is the plasma created? “Energy consumed” is a standard Rossi trope. Energy is not consumed, unless there is an endothermic reaction, we could then use that language.

The voltage across the device is given as 0.25 volt and the current 3.2 mA. He claims a resistance of 75 ohms. Previously he claimed that the operating resistance was zero. 3.2 mA might maintain a plasma, but would not strike it. Periodically, in the Stockholm demonstration, there was a zapping sound and a flash of light. He was striking the plasma, which would take a far higher voltage. There is no mention of striking a plasma in the paper.

In any case, no confirmed experimental results, no challenge.


Malcolm Kendrick


Subpage of anglo-pyramidologist/darryl-l-smith/skeptic-from-britain/

drmalcolmkendrick.org/2018/12/03/dr-malcolm-kendrick-deletion-from-wikipedia/ 616 replies
drmalcolmkendrick.org/2018/12/18/wikipedia-a-parable-for-our-times/ 460 replies

Dr. Kendrick’s blog came to my attention because I was accused of being Skeptic from Britain. When I looked, it was clear who this was and I have verified the identity through a review of contributions, both on Wikipedia and on RationalWiki, a hangout for “skeptics” who are, much more often, pseudoskeptics.

Dr. Kendrick’s Wikipedia article, and low-carb food plans and related information, in general, were attacked by that faction. It has not been uncommon. The same faction attacks and attempts to suppress “non-mainstream” information in Wikipedia, far more than policy would allow, and often being decades out-of-date.

This page will examine the issues, and hopefully provide some guidance for those who tangle with that faction. Misunderstanding of how Wikipedia works is very common, so perhaps some of that can be cleared up. (more…)

CFC Comment

Steven Byrnes commented on this blog, and I decided to reply in detail on this page.
The comment was on a post, Ignorance is Bliss.

I thank Dr. Byrnes for engaging in this discussion. Here is what he wrote:

Dear Abd, I’m a regular reader of your blog and I thank you for publicizing my comment in your post here. I also thank you for giving my blog a “10” in your blogroll on the right, I noticed that a long time ago and was flattered 🙂

The old saying has a truth to it: any publicity is good publicity. Bloggers support each other. I see that Steven put a lot of work into his examination of cold fusion, which is appreciated, even if I don’t think it is complete.

As you saw, yes I have extremely high confidence in the nonexistence of LENR (in the sense that I believe that the measurements of excess heat, helium-4, etc. are the result of experimental error), but as a careful scientist I will never say I’m *infinitely* confident about anything, not even the sun rising tomorrow.

Me too. I don’t claim to be a scientist (I’m certainly not “credentialed”), but I strongly appreciate the ideals of science, and much of the practice. Some of it sucks, but that is mostly a failure to live up to the ideals.

So I do continue to think carefully and seriously about what the implications would be if LENR exists (in the sense that most of the published LENR experimental results can be accepted at face value), and for the sake of argument, I’ll assume that LENR does exist for the remainder of this comment.

Yes. I will keep that in mind. However, I will separately address the first part, above, because you still wrote “supremely high confidence,” and only denied “infinitely high confidence.”

For example, parapsychology refers explicitly to the study of the paranormal, phenomena that appear to be outside of ordinary understanding. Parapsychology is not a belief in some specific explanation of these phenomena, yet a well-known review of the field, using Bayesian statistics to claim near-impossibility for “psi,” whatever that is, cited a Bayesian prior of 10-20 for the possibility of psi being real, using this in a calculation aimed at dismissing quite strong experimental evidence that something not understood was happening. He could have more honestly have said “I believe this is impossible. How could your “extremely high confidence” be distinguished, in a practical sense, from certainty? If we are sane, we always understand that we might be wrong about something, even if we believe it strongly enough to literally stand on it.

It is routine to begin with accepting experimental results at “face value.” This holds for actual results, real measurements, the “testimony” of the researchers. The interpretation of the results is another matter. Error in interpretation is extremely common. In the early days of cold fusion, it was commonly thought that there were two kinds of replications, positive and negative, and that these were in contradiction, i.e., one or the other must be wrong. That was ontologically naive, and what we now know, with reasonable certainty, is that the positive and negative results, when examined more carefully, actually and in the long run, confirm each other.

As an example, load below about 85%, you will not see LENR effects in the FP experiment. Those negative replications confirm that. However, 85% could be a necessary but insufficient condition for heat results. There are also “negative” results where high loading was obtained, which, again, shows that some other condition is necessary, and this has been narrowed to, most importantly, poorly-understood conditions in the material. Pure annealed palladium, for example, does not generate heat, until and unless it is repeatedly loaded, so if researchers give up quickly when they don’t see heat, all this does is to confirm the need for patience, in that approach.

When I told my daughter, who was then about nine, about Pons and Flieschmann experience, and the negative replications, she said, immediately, knowing almost nothing more, “Dad, they didn’t try hard enough!” I’d say she was right on. What replicators should be looking for is to reproduce the result, including errors, if any! Then it becomes possible to identify — or rule out — artifacts. Lewis thought he had done that with “failure to stir.” However, his cells were greatly different from FP cells, dimensionally, and later analysis is that the FP cells, tall and narrow, were quite adequately stirred from gas evolution, whereas the shorter, squatter Lewis cells would be much more vulnerable to this calorimetry artifact. The Lewis replication was rushed, with inadequate information, like many of the early negative replications.

It is still a difficult experiment, not the “battery with two electrodes in a jam jar” of many impressions.

Much “negative replication” looked only for clearly nuclear products, such as neutrons and tritium, and found none. Obviously, if the effect was not set up, that was an expected result, even if the FP Effect is real. Further, neutron levels, when found, were 1012 or so below expectation from reported heat, and tritium, when found, was often dismissed as “not commensurate” with the heat, which obviously indicates that it was not from d+d -> t + p, either alone or as 50% of the full d+d branching.

(Other work, including by tritium experts at BARC, found tritium well above background, and this work has never actually been impeached. When I was writing my heat-helium paper, and pointed out that the tritium work, being uncorrelated with heat, was less probative, I received an objection from one of the researchers at BARC. I explained that tritium was very good circumstantial evidence, but did not show that the heat was nuclear, though it could certainly show that “something nuclear” was happening. He accepted that. Historically, it is a tragedy that heat and tritium were not measured in most experiments, and it still happens that when I bring this up, a researcher will say, “But they were not ‘commensurate’.” And that is what certain reports actually say. “Tritium was found, but was not commensurate with heat.”

Now, how would we know what level is “commensurate”? Obviously, with a d-d fusion theory, which then expects so much tritium and so much heat, a particular ratio. Without a theory, we would not know, and what would remain interesting is the actual ratio. If heat and tritium are correlated, it becomes far less likely that both are artifact. Because it is very possible (I consider it likely) that tritium levels are correlated with the H/D ratio in the heavy water, that tritium is a result of reactions with H, possibly as secondary effects, not the main reaction and certainly not producing measurable heat, that ratio would need to be measured and reported, and because heavy water is hygroscopic, absorbing atmospheric water, that measurement needs to be checked after the experiment as well. I never saw an example of that being done.

Researchers were typically working with tight budgetary constraints, sometimes under difficult conditions. So a great deal of relatively obvious work has never been done, or if it was done, was not reported, for various “reasons.”

(And, collecting papers for creating better access here, I’m finding, in early conference proceedings, many findings that have been buried in obscurity. I also find lots of relative garbage, but anyone who actually did experimental work and reported it, I do not readily consider their work “garbage,” which, more properly, refers to way-premature or just plain silly theoretical work, or badly reported and misinterpreted conclusions from shallow experiments. All that is present in the corpus. So it’s trivially easy to find stuff to criticize.

(This blog has comment facilities, and it is possible here to comment on any paper in the history, such that commentary becomes visible and organized with the material. It’s rare that anyone actually does this, except me. We need far more of this.)

I’ll focus on some of the more important aspects of the proliferation / safety issue that I think you are missing or misunderstanding.

Perhaps, but much more likely, since I’ve been considering risk from LENR research for almost a decade, you are missing or misunderstanding why the problem of creating an explosion from LENR is so difficult, or missing a more detailed exploration of the implications. Since I have concluded that LENR is almost certainly real (but of unknown mechanism), I have to face that possibility with more reality; for you, it is an academic exercise, since, after all, you effectively believe it is not real.

First, let me be a bit more concrete about the explosion issue. Storms talks about a “nuclear active environment” (NAE)–some as-yet-unknown configuration of atoms and electrons that enables the LENR process.

Yes, he does. When I say “unknown mechanism,” I do not mean “completely unknown.” With varying degrees of probability, we know much about the mechanism, that is, it has certain traits.

When people look at the post-excess-heat palladium under the microscope, they say that there are little pits that look like microscopic explosions, and that show signs of high temperature.

These are sometimes observed. There are two kinds of structures observed: ordinary pits (which occur at surfaces when high-vacancy material is partially annealed, as I understand the material, and “volcanoes,” which appear to have been melted, with what appears to be flowed ejecta. The two are sometimes confused. If I’m correct, the apparently molten material in volcanoes is seen to be palladium, and the ejecting force could be vaporization. Volcanoes are quite rare, I understand, and one of the defects in cold fusion papers is that anecdotes are often given without an overall analysis of frequency. Hence, apparently, without having that understanding, you come to a premature conclusion:

So I think the default assumption should be that, during LENR, some small part of the electrode becomes an NAE, and it “blows up” with a microscopic “bang”, creating heat. Then a moment later some different microscopic part of the electrode randomly turns into an NAE and does the same thing, and so on. And a large number of microscopic “bangs” averages out to look like a steady creation of heat as measured by calorimetry.

The prime evidence for this idea would be the “sparkles” shown in a SPAWAR video where the cathode is shown with flashes of light speckled across it. However, that was IR imaging, and the surface does not show the density of “volcanoes” to support the idea of these “explosions” being routine. So you have created an idea of a phenomenon being common (many times per second) that is probably far below that in frequency. (I can’t be sure, at this point, because frequency or density has not been reported, but this could be on the order of one volcano per day.) However, for the purposes here, I will allow that LENR might on occasion reach temperatures higher than the melting point of palladium, or even vaporization temperature.

It has been argued that such high temperatures could not be reached if the NAE is destroyed. This, in my opinion, neglects the environment and heat flow. It could occur that a configuration of reactions could heat some location surrounded by active sites. We do not know how the heat from LENR is distributed, and most radiation would deposit the energy over a region (not necessarily in the immediate NAE). We do not know if NAE is repeatedly active, or if reaction rate is limited to the rate of formation of new NAE. We do not know how long NAE must exist before it can catalyze a reaction. However, there are certain basic limits.

Obviously, the fuel must reach the NAE. In this environment, that requires diffusion, which takes time. Further, local loading will vary (and the variation will increase with temperature), so the idea that perhaps there is a strict loading requirement runs into the problem that there is no control able to establish this. Loading will normally vary from site to site.

However, if we create Fukai material that is loaded to the theoretical maximum, that would be relatively uniform. There is substantial evidence that NiH can be nuclear-active. Fukai material has been made, with nickel, loaded with hydrogen at 5 GPa, and this was then heated to 800 C., and the Fukai phase Pd3VacH4 was formed, over about three hours. The press was not vaporized. Nor, in fact, was any sign of fusion observed. Something else is needed. This experiment has not been done with PdD. I’m recommending against that, at this point, unless the quantities are drastically reduced and one is prepared to damage the press. There are more cautious ways to approach the possibility.

So then the concern is that it is possible to set up conditions such that no part of the electrode is NAE, and then suddenly, much or all of the electrode is NAE.

There is something missing. It must not only be NAE, it must be loaded with fuel. I can imagine making tons of NAE, literally. But if it is NAE, and it is loaded with fuel, at some point the loading will reach an active level and the material will start to heat. If it heats to 890 C (Pd), the NAE will be annealed out. If it reaches the melting point of palladium, the NAE will be immediately destroyed. I suggest that there is no way to load the palladium to fully-active levels (fast fusion, perhaps) while keeping it intact.

And if there is, we will recognize that, because long before that becomes practical, the danger will be understood, unless this is done by some isolated or secret researcher, working for an insane government, probably. To protect against this risk, we must understand cold fusion, or we will be defenseless if it is invented.

In that situation, instead of the “pitter-patter” of a series of microscopic “bangs”, there’s one great big huge “bang”, as the LENR process happens everywhere at once in a macroscopic volume.

Yeah, I already understood the idea, I thought of it years ago. Like much of what I come up with, it’s obvious if one gives the matter some consideration.

To address your “600C” statement more specifically, yes a condensed-matter environment is *stable* only at low temperatures, but if the reaction happens in a sufficiently fast and simultaneous way, it may already be over before the atoms have yet had time to move into a different configuration.

The problem is that “fast and simultaneous” is not likely to characterize a process that depends on the diffusion of hydrogen isotopes in metals, and where the energy is released stochastically. We are almost certainly looking at fusion through tunneling, which is stochastic. Yes, it is possible to imagine the materials coming so close, or with such charge shielding, that fusion is fast enough to be used in the way described, but getting to that condition is the problem.

Takahashi calculates that the 4D TSC will collapse in a femtosecond and fuse in another. That could be fast enough, I suspect, but the collapsed BEC will be highly vulnerable to being broken up if there is substantial radiation from other fusions, and the fusions will happen at variable times. To get to an almost-ready state all through a volume inside a metal would require very even and very precisely controlled loading, but loading will vary, unless the temperature is very low. Cold fusion rate increases with temperature, that’s a well-known effect. My explanation of this, if we follow 4D TSC theory, is that the trap that confines the two molecules so that BEC formation at room temperature is possible (if rare) requires energy for them to enter.

I said “suddenly” above, and you object that we’ve never seen anything like that in numerous experiments over the years. But remember the most important fact about the NAE: we don’t know what it is!

The argument here appears to be that we should be afraid of something that has never been seen, merely because it’s unknown, but that we can, by imagining something unknown, invent a way that it could happen. There are plenty of scenarios I can imagine that end with the extinction of all life on Earth, and this one strikes me as far less likely than many of them.

Let’s say I publish a theory explaining how LENR works, which implies a recipe for determining exactly what configurations of matter do or don’t act as NAE. My theory is published in newspapers and endorsed by all the most eminent nuclear physicists.

Yes. I would expect some die-hards, there is a tail to the rejection cascade. Even when evidence becomes overwhelming, a few may soldier on. But so what? The immediate scenario presented is likely.

What happens next? I’ll tell you what happens: Millions of scientists and engineers around the world will immediately start combing through the database of all known materials and all known processing techniques, searching for NAEs that are easier to create and easier to control than Fukai-phase PdD (or whatever it is).

That Pd may not be difficult to control. Nobody has tried. There is now suspicion that the FP heat effect, and some other LENR effects, were caused by adventitious creation of Fukai-phase material. It’s plausible. There are possible ways to create such material other than using a diamond-anvil press (which is obvious if adventitious creation occurred at far lower pressures). The Fukai phases are the actual stable phases of PdD, and so they can accumulate. As well, when deloaded, Fukai material remains metastable, and can be stored and accumulated. I can imagine many years of productive research to be done.

(I define “productive research” as research that increases knowledge, not that necessarily creates some practical energy production. That’s a secondary goal, often down the line. In the game I propose, the goal is not “cheap energy,” but knowledge, and knowledge includes all results, not just “positive” ones. I’ve been arguing this before the LENR community for years, decrying the habit of only publishing “positive results,” and I’ve been gratified to see the publication of “negative results.” Certainly JCMNS has been publishing some of them, and there are major Conference presentations that can be called “negative.” In science, my opinion, it’s all good.

The point here is that if explosive LENR is possible, it will be found. I agree.

So no, I’m not particularly worried about palladium deuteride electrochemical cells.

Electrochemistry is useful for convenient generation of deuterium to load metal hydrides, and the electrolysis encourages loading at low system pressures. However, the future of LENR is far more likely with gas-loading, and with nickel and hydrogen. That’s the recent Japanese work that led the Spectrum article. That work is generally following Takahashi theory, but I have not seen any specific results that seriously prefer the theory. NiH is a long term possibility.

Deuterium fusion is more energetic per reaction, if I’m correct, and it is possible that an explosive device might need to use deuterium. If so, it’s relatively easy to control deuterium. It’s already difficult to obtain, I bought my kilogram from Canada, and they are no longer selling to Americans, and amateurs in this field often report difficulty obtaining deuterium. But there are ways around this, and a player seriously determined to use deuterium could make it from ordinary water. It’s simply a lot of work.

I’m worried about this worldwide decades-long systematic search, and the possibility that this search will turn up a “next-generation NAE” that can be created in large volume and high yield and low cost, and which can be flipped on and off in a controllable way.

The problem is much more difficult than you realize, I suspect. “Large volume” can be done. Most LENR research has avoided this for obvious reasons. (If the reaction is difficult to control, if we don’t know the precise conditions, then we may accidentally create too much activity for the set-up to handle, and that is what Pons and Fleischmann did in 1984 or 1985. They got a meltdown.

“Low cost” can also possibly be done (with nickel and hydrogen, perhaps). The Japanese are using materials that, in production, could be relatively cheap. As it is, they are processing them so much that I don’t think they are cheap. Right now, Fukai material, the pure stuff, can only be made in diamond-anvil presses, so it’s expensive, I expect. But a way around that may be found, and, in fact, if the material turns out to be very useful, I’d predict it. I can think of ways to possibly mass-produce it. With nickel, cheap. With palladium, well, palladium is expensive. Processing would increase the cost, but one might not need much. I once figured out how much it would cost to make a water heater with the Arata effect, as reported. I came up with $100,000 for a home water heater, just for the palladium. Obviously, not practical. It would be a very attractive target for theft.

If the reaction is triggered by laser stimulation, which is possible and has been done, it could be controlled, but only at a modest level, and only at the surface. How would you stimulate every site at once, in a solid? Maybe with phonons, I suppose, but this starts to be something not doable with “car parts.” Letts used tunable dual lasers, far from cheap, to create THz beat frequencies.

More likely this is what will be found: a material that is quite nuclear active, that when loaded with a hydrogen isotope, will fuse it, assuming other conditions are adequate. Now, how do we make this happen quickly in a material, so fast that the material doesn’t have time to melt and so all the proto-fusions can pop at once?

Imagine that palladium can be made that is super-NAE. It is an array of special environments that, with a certain presence of deuterium (so many atoms or molecules per site), generates fusion. It is not impossible that Fukai delta phase is such a material. It has not been tried.

In order to be used for explosion, the reaction must be immediate. If it is stochastic, unless the half-life is very short, it cannot made to happen simultaneously in all available sites.

The laser stimulation that worked was in the THz region, which is very low-penetration. So this can only affect the surface. (The known FP reaction is only at the surface, it does not occur in the bulk. It is possible that this is because Fukai material, adventitiously formed, only forms at the surface, so Fukai material, if it works, could be far more powerful, that’s possible.

There are probably thousands of deuterides, and countless ways to prepare and manipulate them.

The parameter space is vast, agreed.

What is the probability that a “better” NAE will be discovered, when we know what to look for? I think the probability is quite high.

I agree.

So then we get to your comment about the landmine: “What we want to do is find it, so that we don’t step on it and so that nobody else does, either.”


You don’t seem to appreciate something about the dynamics of dangerous information, which is that not only (1) it would be horrible beyond imagination to disseminate a recipe for a bathtub nuclear weapon made from car parts,

Premises not accepted.

You have gone from speculating that such explosive technology might be possible, to imagining the development and dissemination of a “recipe,” like a book on “How to Build Your Own Nuclear Weapon from Materials Available at Home Depot, for Fun and Profit”. I would agree that this would be unethical, to say the least.

However, we are already afflicted with people who will do this. They are called “teenagers,” especially boys. Something about testosterone, apparently. Obviously, not every teenager could or would contemplate this, but some are so angry with life that they will create as much destruction as they can manage.

I remember being about 16, and talking with my friends about “If we were angry with the world, and wanted to kill as many people as possible, how would we do it?” I was not angry with the world, but one of the motivations behind teenage behavior is a desire to feel powerful.

What I thought of was pretty obvious, so obvious that US intelligence also thought of it, and then the incoming Bush administration dropped the idea. Learn to fly a plane (one of my friends was a pilot at that age), and then hijack a fueled airliner and crash it into the Rose Bowl when it was full of people. A lot more damage than the World Trade Center, actually.

We are already exposed to many such dangers, and we need to work on creating a world that doesn’t make people so angry! There will always be a few, but such could be detected.

There is a cost to the protection, loss of privacy. Something has to give. A government strong enough to prevent such events is also very dangerous, so  the real problem (on which I have spent as much time as cold fusion) is governance, or, stated with maximum generality, how we can, as humanity, communicate, cooperate, and coordinate, on a large scale. It’s coming, it is  — I hope — inevitable, but the question is whether or not we will first destroy ourselves or, in effect, the planet.

And all this requires knowledge, not ignorance.

but also (2) disseminating this same recipe *except redacting the very last step of it* is barely any less bad!

I suggest that this young physicist accumulate some life, including a deeper ontology. “Bad” is not a reality, it is a fantasy, a story, and we invent such stories as shorthand or to attempt to control behavior. It is a poor method for doing that. It only works for fast-response situations, that’s why it evolved, I assume.

Why? Because someone else, sooner or later, will figure out and then publish the redacted last step, either because they’re oblivious to the danger, or out of a misplaced belief in scientific openness / techno-utopia, or even because they’re anarchists or military or whatever. So what do you do? Redact the last *two* steps of the recipe?? Same issue, it just takes a bit longer.

No, that is not what I would find inspiring. Rather, if such a the possibility becomes clear, government must be involved, and for a danger like this, world government or at least major multinational cooperation. If the possibility is real, then protection must be real. The details would depend on the recipe. Suppose that the most difficult to obtain part is a gasoline engine (just picking a car part, not necessarily the most likely). Collectively, we can give up gasoline engines or control their usage. One of the dangerous aspects of present life is the increasing possibility of full surveillance. Is that Good or Bad?

Mostly, here in the U.S., we think of it as Bad, because we don’t trust governments. However, it could also make a difference between survival and extinction. These are choices which we will face as a people, or we will not survive, and we may not survive in any case. Is that Good or Bad?

Trick question. It is neither Good nor Bad, those are fantasies. Humanity will eventually become extinct, and what we are will, if it survives, become something else.

And everyone will die, that part is obvious. So the issue worth focusing on is not avoiding all risk of dying (for ourselves and others), nor the risk of suffering, which the Buddha pointed out, cogently, is intrinsic to existence, but how to live well, with the time we have.

Let’s think more concretely about the futility of the “find the landmine without stepping on it” plan. Let’s say the explanation of LENR has been published, as in the story I wrote above, and you are a grad student, one of the many people searching for the “next-generation NAE”, and hey, you found it!

That could be a real possibility, and I’m not even a graduate student. I am working with people who have labs, and it is not impossible that one of the ideas being worked on will pan out.

You immediately tell your boss,

You assume I have a boss. If so, any ethical obligations are shared.

and patent it and publish it, and you expect fame and fortune, because your discovery is likely to help make LENR a commercial success!

Key word here: patent it. What happens if a patent is filed on a dangerous technology? Have you looked at that?

Oops, hang on, before you told your boss, did you stop to decide whether this discovery would lead to bathtub nuclear weapons made from car parts?

And you assume that LENR researchers are ethical dodo-heads who would not think of such a thing. However, that’s unnecessary. Suppose that the inventor doesn’t think of it, even if it is possible and could be a logical development of the technology.

Most likely, no, because probably it never even occurred to you to check. Or maybe you thought about it but decided that there was no risk… but maybe you learn later on that you were wrong about that! Or maybe you do study the issue, decide Wow, that’s super-dangerous, you better not publish it! … but then two years later, you read that same dangerous discovery in the newspaper, because a different grad student halfway across the world was working on the same thing as you. Like I wrote, “good luck keeping a dangerous truth secret, when 100 top research groups in 100 countries are all digging nearby.”

Yes. Then what happens? Mushroom clouds or planet killer?

Depending on secrecy is a form of depending on ignorance. It’s not terribly secure. Look, there are already hundreds of people all over the world researching LENR. The Russians are big on it, and so are the Chinese and Japanese.

You are correct in that if an explosive method is possible, it is likely to be discovered, if LENR research opens up and becomes widespread. However, in order to assess that risk, we must do two things:

  1. Consider how likely it is that an explosive method could be found.
  2. Consider the harm of not pursuing LENR research.

Sane choices are not based on “too horrible to contemplate.” In making such choices, we need to contemplate all reasonable possibilities. If the probability of finding an explosive method were high, there could be more of an issue.

The possible benefit (including harm reduction, including saving many lives) is clear, so if LENR is real, what then is advisable? We could do a game theory study, evaluating the risks and benefits. To do that intelligently does not allow knee-jerk “too horrible to contemplate” scenarios.

When the decision was made to run the LHC, the nightmare scenario was maximum “horrible,” the planet could be literally destroyed if they created a substantial black hole or, say, stranglets that are “contagious.” Yet the decision was made to go ahead, and the benefit was nowhere near as great as LENR could present.

Was that unethical? It is arguable, but my opinion is, there may have been an ethical failure, but it was not huge. The devil is in the details.

I don’t know the details, who was responsible, and the full process that they went through to make the decision. I don’t know that the decision was “right.” That’s the same fantasy as “good” or “bad.” (i.e., that the world was not destroyed does not show that the decision was “right.” Maybe they were just lucky! If I bet everything I have on a coin toss, for a benefit smaller than the value of what I have, and I win, was I “right”? If I have a foolish trust and stand on it, and am not harmed, was I “right”? I don’t think so.

This article covers the issue. It does not describe a risk benefit analysis, but only a decision that the horrible outcome was “impossible.” That thinking was defective, since an unknown risk is always possible, though it can be very improbable.  Ah, where is ontology when we need it? (I would agree that the outcome is so improbable that the possible benefits may have outweighed the risk in the full consideration, but was this given full consideration? I don’t know.

A very small but not impossible risk could outweigh a small benefit, so was the benefit great enough here? I don’t know.

What I do know is that my life and the life of my children and descendants were put at risk, and they didn’t ask me. That is a problem, but that problem is all over the place, it’s the problem of governance and collective decision-making.

If experts in academia and industry all around the world are searching for the “next-generation NAE”, and they know exactly what they’re looking for, then if one exists, it will sooner or later be found and made public, no matter how dangerous it is. This is my strong belief. In other words, the beginning of that search process is already past the point of no return.

How public it is made is not obvious. I agree that if the possibility exists, it is more likely to be discovered if LENR is accepted, but this is a losing argument for the rejection of LENR research. Even if the analysis were valid, which I doubt, it would be useless. Nobody will buy it, I predict, at least nobody who makes much of a difference.

Now, the story of the graduate student was not completed.  He applies for a patent, and the U.S. government seizes the patent. They do that, on occasion, with technology with possible military applications. The danger would actually be that the patent office would reject the patent on the grounds that “LENR is impossible,” which has happened, because then the person would go ahead, make the technology, and distribute it for . . . fun and profit. In other words, the rejection cascade could be making the world more dangerous. And that would generally be true for all knowledge. Depending on ignorance and secrecy, long-term, is not a survival strategy, though it can seem that way to the reactive mind.

(That rejection would be unlikely if the conditions of this scenario, that LENR research has come to be considered respectable, hold. The rejection was not actually rejection, because it could have readily been overcome. Rather, while patents are ordinarily issued for unproven ideas, it’s routine, if the idea is considered “impossible,” and if that comes to the attention of the examiner, they may demand evidence of workability and enablement. That is allowed by the Constitution, in spite of what some jilted inventors think. Bottom line, a cold fusion patent still is unlikely to be issued if it is written to claim “cold fusion.” It’s not actually fair, but within executive discretion. And all the rejected applications were, in the end, for useless technology, it had not been developed to the point of practical utility. The problem is that raising funds for development can be more difficult if a patent is not possible.)

We can keep stepping back in time. You’re the one who discovers a theory explaining how LENR works, which would lead inevitably to the situation of the previous paragraph. Do you publish it?

Again, you have left out a crucial step and factor: It is not just an explanation of how LENR works, but what is discovered, for this line of thinking, must be a way, or predictably lead to a way, for a very high-explosive technology. If I merely discover how LENR works, or, much more likely, a way to make very active NAE (I should say “we,” not “I”, because whatever I do, to be successful, will not be done alone. I may try a codep experiment with a gold wire and uranyl nitrate in the electrolyte, and the extremity would be, not a mushroom cloud, but a possibly dangerous level of neutrons, a local risk, and if I try that experiment, I would have neutron monitoring in place. Far more likely, if it works — which is not probable, but possible, this would be confirmation of existing research in press at this time — it makes detectable levels of neutrons, and it doesn’t take many to be detectable.)

If you do, I just said you’re setting in motion an unstoppable chain of events that will lead to the publication of a dangerous NAE recipe if any exists.

You have a weird idea of inevitability. First of all, that recipe does not exist. You mean “if any is possible.” Possibility does not exist, except as possibility. Possibility is a fantasy that happens to be useful, and which also can be abused.

Publication could be stoppable, as one possibility. If the danger is high enough, publication could be assigned the death penalty. That’s extreme, for simply making it illegal and creating active enforcement, that continually searches the internet for the appearance of any publication and that immediately hits the site with a governmental level DOS attack and then shuts down the domain, could be enough. And they toss the publisher of a “terrorist recipe” in the clink for however long is deemed necessary. And materials, including “car parts” can be controlled. If we can use beach sand, maybe not.

It is not going to happen that physics and materials science are outlawed. Truth will out, and that’s good news, not bad.

But does such a thing exist? It’s far too early to know, even if you tried in good faith to figure it out. (It’s impossible for one person or even team to thoroughly search the whole space of possibilities.)


So I say censoring oneself at least bears strong consideration, even at this stage, even without knowing even vaguely whether there is something dangerous.

I have considered it. When I first thought of an explosive possibility, I considered it carefully. Maybe I should STFU, I thought. However, I now know much more about the conditions of LENR. I had what we could call “non-physical ideas” about it.

OK then take another step back in time: Do you publish something that is not quite a theory of LENR but contains the core of an idea that will lead others to the theory? Do you publish the result of an experiment that beautifully narrows down what the theory is?

There are about 5000 papers on LENR. Progress is not likely to be made by developing the theory, though theory could be useful. Progress will come fromm first, reviewing what has been done. Often, good work has been buried in obscurity. Then experiments will be designed to test what appears, and will be confirmed, developing a “lab rat,” is the word used by LENR researchers.

Then this experiment will be used to develop a much larger body of confirmed results, with correlations. Then theory formation will have enough basis to do more than guess.

So that experiment (that leads to a bomb possibility) is not going to be performed any time soon.

Here is what is reasonably possible in the short term. The workers at Texas Tech complete their heat/helium study and find that the ratio tightens on 23.8 MeV/4He as precision increases, and this is published in a major journal with a paper carefully vetted and designed to be essentially bullet-proof. The paper mentions no theory except “deuterium conversion.” It describes the protocols, and they were routine, work that has been reported hundreds of times. The difference would be in the helium measurement. And I could write a book on this point.

(If Texas tightens on 30 MeV, say, I take another look at W-L theory. It would not necessarily be strong evidence, but would indicate that other reactions are happening than deuterium conversion to helium, and not just a low levels — that is already known –, but at higher levels. (If they find that heat and helium are not actually correlated or the correlation is very weak, I would likely take up another hobby. That was the “extraordinary evidence” needed to overcome prejudice against “extraordinary claims.” Not the finding of heat, nor the finding of helium, but the correlation. And if my paper published in Current Science, 2015, is defective, please, write a critique. If it is decently written, I would support publication. There are errors in that paper.)

If a recipe for bathtub nuclear weapons made from car parts is out there in the void, waiting to be discovered and posted on the internet, we should ask ourselves: which step in the scientific research process is the step that starts an unstoppable chain events leading to that fateful internet post? Is it already too late today?

Your imagination does not create an “unstoppable chain of events.” And the “internet post” is not the maximum disaster, there are events necessary beyond that before actual harm is done. Your analysis is hysterical, you said it correctly with “terrified paralysis.”

You ask “Does Byrnes think he is the only one on the planet to be concerned about such issues? On what does he base this opinion?” Well, I know that I spent years reading about LENR before I saw a single word written about proliferation risk.

Did you talk to Peter Hagelstein about it? There is a mailing list that has been operating for many years where CMNS researchers communicate, and that is where I have seen mention. It is a private list. These are the pe0ple who would actually be faced with the ethical issue, most internet discussion is not from those people, and people who occupy themselves with discussions like what you reported are not likely to be a real member of that community, or if they became such, they may have moved on. You are making assumptions about a whole community of people based on a very non-representative sample. We could ask the community about this issue. Game?

However, I’m not depending on ethical restraint. That can fail because people vary, greatly. No, if the possibility becomes so obviously real that a dangerous recipe is or could be published, if I could tell that, — by knowing the recipe! — I would blow the whistle myself. If nobody responds, it would not be my moral issue any more, it would be everyone else’s, but I would be responsible for clear communication. “Innamaa al-balagh ul-mubiyn” is the Qur’anic phrase.

Maybe this discussion is out there somewhere, but I’ll tell you, I never came across it, and indeed I was totally oblivious to the issue for years. (Good thing I’ve never discovered any dangerous information on LENR myself; during that period, I would have just gone right ahead and immediately posted it on the internet! I don’t claim to be blameless here.)

Got it. But you are now discussing LENR, and open and clear discussion of LENR, where the issues can be examined in detail, could possibly hasten the day. In fact, that is part of why I do it.

You have argued that clear evidence of the reality of LENR could then lead to that Inevitable Doom. You might be helping to develop it, or, realize this: I have long used discussions with skeptics to make the issues clear. Where a question arises that is not already clear from existing evidence, I have already taken, on occasion, such questions to experts, and one paper was written out of such a question. Much more is possible. Open discussion fosters the advance of science and thus makes finding a “land mine” more possible. So … what is the conclusion here?

Perhaps you might consider another career, because science intrinsically creates the risk of finding possibly harmful knowledge. In any field, I will claim. What do you think is completely safe?

What I actually recommend is developing a grounding in something where training is available, but most people don’t realize the value. Basic ontology, how to live in the world-as-it-is.

And I also know that people are publishing their LENR experiments and theories in the open literature–even at facilities that are fully equipped to do classified research. I’m happy to hear that I’m not the only one concerned, but I wonder whether I’m the only one concerned *to the appropriate extent*. Because if that bathtub car part nuclear bomb recipe exists out there in the void, ready to be discovered, then I suspect that right here, right now, could well be our last chance to realistically stop, before the situation avalanches out of anyone’s control. And yet no one is proposing to do so, to my knowledge.

When SPAWAR first discovered what appears to be clear evidence of neutron generation (at maybe ten times background), and Pam Mosier-Boss was giving Steve Krivit the Galileo protocol, which had only been published for charged-particle detection, she told him that the cathode substrate wire could be silver, gold, or platinum. He didn’t like that, and wanted her to specify a single metal, because he wanted everyone to do the same experiment. I understand why he would want that, but Krivit is not a scientist and not a researcher, and especially not an engineer of powerful social projects.

She knew that a gold wire produced more interesting results, by far. Neutrons. But she did not have permission to make that known, and she may already have been pushing the limits by telling him gold as a mere possibility. This was U.S. military, and whatever they revealed had to be cleared. She chose silver, and the result was more or less a waste of time, results were . . . meh! Not nearly as interesting as if those experiments had been done with a gold wire, probably.

SPAWAR supervision was obviously very aware of military possibilities, and has obviously concluded, on consideration, that the risk is very low. I have given some possible reasons, but those who know are not talking, nor would I expect them to. Little by little, I am having private conversations with many of the major players. I don’t know any, so far that think high explosive is a LENR possibility. The maximum risk is meltdown, and that might be rapid enough to create a small explosion; and small explosions can and do happen. After all, there can be a stochiometric mixture of hydrogen and oxygen these cells, and closed cells can build up some substantial pressure.

Pam is working on a project to develop a hybrid fusion-fission reactor, that uses cold fusion to generate neutrons that then cause U-238 fission, and that apparently has government funding. It’s possible. Whether it is practical or not, I don’t know. But generating neutrons can be dangerous! Make enough neutrons, you can transmute stuff.

The SPAWAR neutron work is published, and the evidence is plausible. It is unconfirmed, and I know of few efforts to confirm it. I created a kit to do it, the basic kit was $100, power supply not included. Long story, I sold one kit, which got the purchaser, a high school student, into the movie, The Believers, but the LR-115 detectors included were damaged in etching, somehow, not understood. And I gave up on the project because I was no longer interested in single-result experiments. I now have, maybe, some better ideas. Among others, I might redo that work with uranium added, which would make for a stronger confirmation of neutrons, and which would be confirming Pam’s more recent work, perhaps.

By the way: I mentioned above that I don’t believe in LENR, but after 4+ years of reading LENR theory papers (related to my blog), I do have opinions about which purported mechanisms are less far-fetched than others.

Many of those opinions are not surprising. If you have been reading my comments on other subpages of the main page for this page, you would know that I agree with many of the points, but also that I would have advised you that your quest was not likely to find what you are looking for. No theory, to date, is free of implausible assumptions.

LENR is itself implausible, but not impossible, that was an error, and overstatement, which was understood by many at the time.

I promote my own theory (doesn’t everyone?) My theory is that cold fusion is a mystery, but that it is an effect caused by the conversion of deuterium to helium, mechanism unknown. I do not particularly expect my theory to be conclusively wrong, in my lifetime. I fully expect to eventually be proven wrong and would look forward to it.

I also have the opinion that the real mechanism, once understood, will not contradict anything actually well-known, such as basic nuclear theory and quantum mechanics. That’s an opinion, not a fact. Obviously we could not be sure until the real theory is found and tested and proves out.

It is testing that will be the issue, not plausibility, but, obviously, the theory must be plausible enough that someone is motivated to test it. And then for someone else to confirm it. And funding for that must be available. (But some tests might be cheap enough to do with discretionary funds, or there is always GoFundMe. I needed to travel in 2017 to attend the Rossi v. Darden trial in Miami, and that’s how I managed it, and the response was good enough that, when the trial settled unexpectedly, I had enough left to fund my ICCF-21 attendance. Life is good. People are supportive.

Therefore if an Oracle magically told me that LENR definitely exists, I would have my own idiosyncratic opinions about how (at least vaguely) it would be most likely to work microscopically. What I’m writing is based on that. Conditional on LENR existing, I think it’s not merely a nonzero possibility but actually pretty likely that unlocking the mysteries of LENR would be, in the long run, a catastrophe. (I am, however, using “bathtub nuclear weapons made from car parts” as a kind of joke or figure of speech, not as a literal description of exactly what I’m worried about.)

Right. I can see what you are doing. Many physicists have attempted to “explain LENR.” Ed Storms often complains that they come up with theories that don’t match the evidence, and he is more or less right about that. You would be unlikely to be an exception. And until you are powered by something far more inspiring than “This is all wrong, but I’m going to look at it anyway,” you are unlikely to have the power to do better. That’s about how the brain works, at least normally.

However, your ideas can still be useful. You don’t have to be “right” to be useful. My dedication is to science,  as a process, not to science as “knowledge,” unless “knowledge” means what we actually know, i.e., the full body of experience, rather than how we interpret it, which is provisional.  Highly useful, but a map, not the Reality.

I’m not convinced that you know enough — yet — to distinguish what is necessary for a working theory, but maybe. We will be, I hope, looking at those pesky experimental details.

You have been talking with Peter Hagelstein, who has been working intensely on the problem for approaching thirty years. If you read his papers or listen to him speak, he has explored many avenues and rejected many ideas after such exploration. He has settled some, but at ICCF-21, in the Short Course on Sunday that preceded the Conference proper, he talked about what he had just come up with the week before. When the DoE considered cold fusion in 2004, reports are that everything was going very well, reviewers were astonished to hear what had been done, and then someone asked Peter what he thought was happening. I have said that we should, as a community, have had a handler for Peter there. Peter did answer, and it was reported that this was when eyes glazed over and rapport was lost. Peter would not be aware of the harm of premature theory discussion, I think. He doesn’t think that way. So a handler would have trained him to say, I have many ideas, and some have been published, but I have nothing as important to consider now as the experimental evidence that there is an effect. If you want to talk with me later, give me your card — or here is mine — and I’ll be happy to talk with you.” And then he would have said, “Briefly, though, what is happening appears to be the conversion of deuterium to helium and I am looking at how that might happen with the other effects — and lack of effects — that are actually seen. D-d fusion is only one of many possibilities.”

Instead he told them the Theory du Jour. Like he did at ICCF-21, with noobs. I don’t recommend it. We need him to be talking with people like you, Steve. And, ultimately, with the full mainstream physics community, because I suspect that this is what it’s going to take to crack the nut.

Sorry for such a long comment, kudos if you’re still reading, and I hope that helps clarify where I’m coming from,
All the best,
Steve B

The same to you, Steve. It was already clear, do you realize that? Certainly it is possible, th0ught, that I’ve missed something.

Deep communication is a process. Written communication can be very difficult, or at least inefficient. In my training, it was discouraged, in favor of face-to-face communication, or, if that is not possible, then voice. On the other hand, once a working relationship is developed and for the creation of written documents, writing can actually be very efficient.


Steven Byres responded, which I am copying here.

Dear Abd, thanks for your thoughtful reply.

You are welcome, Steven. You have paid your dues, at least partially. To my audience here:

Steven is an apparently competent physicist, and did some study of LENR theory, looking at whether any of the various theories are plausible. He found none that were, though he did not examine all.  Then he suggested that performing or publishing LENR research was “unethical,” which led to this discussion, beginning on this post, Ignorance is Bliss. (I have used that title twice, but it was more apropos here.)

In prior comments, Bynes suggested the book by Richard Muller, Physics for Future Presidents the science behind the headlines. Since I found an inexpensive copy, I bought it and have been reading it. Muller does not echo Steven’s “terror.” However, given his relative ignorance of the actual experimental work with Low Energy Nuclear Reactions, and his training as a physicist, with certain ready assumptions coming out of that experience, his fears are not without a basis, and deserve to be straightforwardly addressed, which is what I’m essaying.

I offer three things to ponder.

First, Nick Bostrom’s recent “Vulnerable World” paper https://nickbostrom.com/papers/vulnerable.pdf is on almost this exact topic and goes through some relevant hypotheticals and considerations much better than I can here.

Simon Derricutt responded to this.

Without accepting every argument, necessarily, I will leave that to Simon. However, I will first state how I read Steve’s point.

  1. “Nuclear” is intrinsically dangerous, but, fortunately, using it for massive destruction is technically very difficult, thus effectively protecting us from other than governmental actors.
  2. LENR, if it is real, is “nuclear.”
  3. LENR looks like it might be usable without the special materials and very difficult technology involved in fission bombs.
  4. Research that would show the reality of LENR would lead to research discovering how to make “nuclear” weapons with LENR.
  5. Therefore performing and publishing LENR research is unethical.

If this is not accurate, please, Steven, correct it. My goal is to state his position such that he will say, “Yes, that’s what I’m thinking” or “Yes, that is what I believe.” His choice.

Second, the recent David Evans affair: https://www.theatlantic.com/science/archive/2018/10/horsepox-smallpox-virus-science-ethics-debate/572200/

I corrected a minor error in the URL, found in the original comment. From that article:

This controversy is the latest chapter in an ongoing debate around “dual-use research of concern”—research that could clearly be applied for both good and ill.

First of all, all scientific research is multiple-use. However, in this case, the research carries with it an obvious hazard. As is common, there is no clear definition of “good” and “ill,” and these tend to be knee-jerk reactions. How we respond to this is another matter, and Byrne’s position appears to be that such research should either be forbidden, but his suggestions appear to involve nothing more than “they shouldn’t do that, it’s unethical,” an argument that appears to do little to change what happens. People don’t tend to listen to others who proclaim them as morally deficient, or does Byrnes live on a planet other than Earth?

Pretty much everyone accepts that it is possible to create smallpox in a lab, and that this will become progressively easier in the near-future, and that therefore any enabling information that lowers the competence barrier to creating smallpox must not be published.

I would tend to agree, but the reality of the risk here is high, and the up side of publishing not so high. In the real world, we balance risks and benefits.

But David Evans went ahead and “spelled out several details of how to do so”, and the journal PLOS ONE went ahead and published his article. Many people in the government and military of his own country are aware of the smallpox issue, but didn’t stop him.

And perhaps they knew what they were doing (or not doing, in this case). Perhaps knowing that it is as easy as it is could be useful. That is, once we know that this is possible, legislation can be written and passed, and the resources necessary to accomplish the task identified. This would not stop governmental-level efforts, though, so there is a different possible response, addressing the vulnerability directly, so that a smallpox pandemic becomes very unlikely. Ignorance is not bliss, no matter how much Big Brother proclaims it.

(He talked to some Canadian government bureaucrats, but apparently the people he talked to were the wrong people and they didn’t understand the implications of what he was doing.) So, based on this example, how is our collective ability to suppress dangerous scientific information?

Ineffective. Further, the issue is “dangerous information,” not just “scientific information,” and who decides what is dangerous or not? What is “fake news” and what is “real news,” and this is very much a live issue.

It is woefully inadequate even in the best of circumstances (blindingly obvious and widely-acknowledged risks, above-board research in a well-governed country).

Let’s look at the actual publication. Steve points to an article in the Atlantic, which, of course, would publicize the issue, making it more likely that terrorists would notice. The Atlantic article points to a Science article that itself refers to a press release,  from a company developing a vaccine that could be effective against smallpox. Currently, immunizing against smallpox is considered to involve higher risks that the risk of a smallpox pandemic. The Canadian research, then, is leading to efforts that could prevent such a pandemic. Even if that research had not been published, all it would take is someone looking at the obvious (to a biological researcher), and we could be defenseless. As it is, will governmental action be adequate?

And this leads to the real issue, it’s the same issue I’ve been working on for three decades: how can we , on a large scale, make collective decisions, and communicate and cooperate, with maximized intelligence and consensus?  This is nothing other than the problem of government, restated with fewer assumptions than are common.

This example, however, fails to show that publishing caused actual harm. It is not clear to me whether it increased or decreased risk. Steve just looks at one side, the “terrifying” one. Steve’s reporting on this misses that the researchers did not just consult the Canadian government; before the research was published, they reported what they had found to the WHO Advisory Committee on Variola Virus Research.

And that report very directly responds to the hysteria:

18.5.4. Advisory Committee Members noted that by nature scientific technologies are dual-use and can thus be used for both positive and negative ends. This is true with DNA synthesis; it is also true for more basic technologies like fire. However, on balance, the historical record has clearly demonstrated that society gains far more than it loses by harnessing and building on these scientific technologies.

They went on to address specific policy issues. This is with research that is far more accessible for harmful application than LENR research is likely to ever be. But Steve argues that it is possible, and therefore . . . .

image from https://snapeatrun.wordpress.com

Mere possibility of a harmful outcome is not enough for policy creation, rather probability must also be assessed, as well as probabilities of benefit or loss of benefit. I will suggest that Steve’s physics education has not prepared him to make these assessments objectively, and even more, his knowledge of theoretical physics, which appears considerable, has not prepared him to assess the technology of LENR. It could, but it would take far more effort and attention. It’s up to him, the choice of whether or not to attempt that.

So, if there’s a 100-step path to get to a LENR-related nuclear proliferation catastrophe, and someone tells me that it’s OK to take the first 80 steps, because by then “the possibility will become so obviously real” that we (scientists and/or governments) can collectively prevent the last 20 steps from getting disseminated, I find that over-optimistic to the point of delusion.

Notice that “nuclear proliferation catastrophe” is an invented risk, when it comes to LENR. There is no indication from LENR research that it will ever be possible to use LENR as he imagines, even if LENR effects become common and easily accessible. The indications are that this is intrinsically impossible. But, of course, I could be wrong about that, as about anything. Always, the issue is probability.

And then, with contingent probability, the likelihood, to this student of LENR, would be that to convert LENR to an explosive device would require quite as much difficult technology as fission bombs or, more applicable, fusion weapons. Fusion is not difficult to create, but explosive fusion, very, very difficult. I see no reason to expect that it would be easy with LENR, given that LENR is a condensed matter phenomenon, and that the mechanism will fail in a plasma (whereas plasma conditions are necessary for classic fusion, allowing very rapid reaction rates).  To understand this, Steve might need to look at other cold fusion theories, the likelihood being that LENR is catalyzed by confinement in specific structures, and it is structure that is absent in plasmas.

(See also: https://politics.theonion.com/smart-qualified-people-behind-the-scenes-keeping-ameri-1819571706 ). You wrote “Truth will out, and that’s good news, not bad.” Do you believe that it’s “good news” that David Evans published several details about how to make smallpox? Do you believe that it’s “good news” that others will undoubtedly follow in his footsteps, and publish even more enabling details in the coming years? Is this a process you would want to speed along and encourage?

Yes, it’s good news if governments respond intelligently. The smallpox risk already exists, and has existed for many years. There are stockpiles of smallpox virus in the labs of two governments, the U.S. and Russia. If not, well, the failure of governments to respond intelligently to hazards is already risking billions of deaths. That’s the problem, not science itself.

Publishing specific enabling details remains unethical, but Evans did not do that for smallpox. It appears that he published specifically to warn governments of the risk, so that countermeasures may be taken.

Third, the example of methamphetamine.

This is utterly fantastic — and naive.

You wrote “To protect against this risk, we must understand cold fusion, or we will be defenseless if it is invented.”

That statement must be understood as “cold fusion applied to explosive devices of very high yield.”

You seem to be saying that if the good guys and bad guys both fully understand LENR, then we’ll be in good shape—in other words, that there exist effective countermeasures or anti-proliferation techniques, and that we will find them and be able to put them into effect when we know what we’re looking for.

Steve mind-reads. Badly. I’ve seen this before. “Seems to be saying” is used to create a straw man argument. I suggest that a more useful way to parse and interpret the language of others is to assume that they are writing sensibly, at least first-pass.  Where there is a risk, there are usually countermeasures that can be applied. I would not write “in good shape,” that’s ontologically unsophisticated, showing how Steve thinks. It’s not how I think. I was reading Whorf and writing about semantics over 50 years ago. It is still not a part of an ordinary scientific education. It should be.

This is an assumption, and a dubious one in my opinion.

Indeed, because he made it up.

There’s no Law of Fairness that more knowledge and more technology will help defense as much or more than it helps offense.

Correct, there is no such law, unless we trust that Reality is Justice, which I could say in Arabic, would that make any difference? To back up, life is not “fair.” Nor is it “unfair.” “Fair” is a human response, common with children. “Unfair!!!” I suggest growing up, it is actually much more fun.

I think that the likeliest scenario in this context is that if bad actors get access to the information, then we will be defenseless whether or not we understand the risk.

The basis for this “think”? Shall I put up that image again? How well do we think when we are terrified?

If we take this to its logical conclusions, we are basically screwed, because this will happen with one risk or another, even if LENR is unreal. I suggest, again, “Get over it! We are all going to die, sooner or later.”

And then I suggest “The inevitability of death can lead to a conclusion. a standard for living, which is to live as well as possible, now, and living in fear is unattractive. What is possible as to living well is almost unlimited, compared to what is possible living in fear. When I had children, I was quite aware that to have children was to risk suffering, what if my children got sick and died? As a single person or person without children, I had no such risk, my suffering would be limited to personal pain, which is easily handled, in fact. If I had no money, it mattered little. But with children, everything shifted. I made my choice, to live, setting fear aside, and that choice does not make us stupid. It actually empowers, as any martial artist would know. Ever study martial arts, Steve?

As a nice example here, think about the technology of methamphetamine synthesis and production. If nobody knew chemistry and chemical engineering, no one would be able to produce meth.

Well, not really accurate, but, okay.

In reality, both anti-drug governments and drug producers have encyclopedic knowledge of how to produce meth.

Encyclopedic knowledge is not necessary, just a recipe that can be followed.

Armed with that knowledge, have the governments been able to stop all meth production?

No, of course not. However, meth production is not a terrorist weapon. If it were, much stronger measures could be taken and might be taken. I remember a Scientific American article when I was in my twenties, recommending that laws against drug production and possession be repealed. Governments continued to ignore the assessments of scientists.

No. The raw materials are too ubiquitous, the required infrastructure is too easy to build, and international cooperation and/or border enforcement are too hard. Knowing exactly what the meth producers are doing has not translated into decisive countermeasures.

Meth production is far, far easier than I expect for methods of creating LENR explosives. I expect, in fact, that such methods are not possible, because of the nature of LENR as “condensed matter nuclear science.”

If long-term LENR R&D eventually leads to a nuclear proliferation catastrophe, I think that, like the meth example, there would be no decisive countermeasures.

This is an assessment within an ignorance enforced by the belief that LENR is impossible. Rather, if LENR is possible, what would it be? What does the evidence indicate?

Notice that “catastrophe” here refers only to knowledge of how to do it, but we must add that the method is accessible and does not require special conditions or materials. Right now, d+d fusion can be achieved in a home lab. But that’s not LENR.

Can we control access to deuterium? We can try.

It is already difficult to obtain and additional controls could be placed. But is deuterium necessary? Further, Steve runs a standard trope, very inaccurate, completely ignoring what Muller wrote.

But heavy water can be extracted from ordinary water by relatively low-tech means like evaporation, distillation, electrolysis, or chemistry.

It can, but to do this with adequate efficiency, uses a lot of power, and that power usage could easily be detected.

Take a mere one liter (!!) of heavy water, run the D+D->Helium-4 reaction to completion, and you get more energy release than the Hiroshima bomb.

Highly misleading, even shocking. Two problems: (1) running fusion to completion is extraordinarily difficult, not possible with anything approaching current technology, by any method. (2) LENR probably does not involve d+d fusion. It requires something else. Now it is very possible that methods of generating useful power from LENR will be developed. However, what is needed for a LENR explosive is quite what Muller points out. Really, I suggest that Steve review that book!

Muller points out that gasoline packs more energy per unit mass than TNT, but TNT is usable as an explosive because of the power level attainable, because of the chain reaction possible, as ignition of any of the TNT rapidly leads to conditions that cause the entire mass to convert to hot gases very quickly.

Fission bombs are possible because the fission reaction will still take place even when the material is vaporized at high temperature and pressure. And then fusion bombs, the same, a deuterium-tritium mixture will continue to fuse if the material is a hot, dense plasma.

But LENR is not at all like that. It is more of a catalyzed reaction, requiring a structured catalyst, and there is no evidence showing that it can take place in plasma conditions. The structure is not there. Nor is one reaction triggered by another taking place close to it. The reaction shuts down if the material melts, and probably before that point. Making this into an explosive is simply not a realistic risk.

Steve has not really paid attention to LENR theory, only to a few very primitive theories, mostly rejected.

To produce one or a few liters of heavy water does not require a big factory – more like a garage, AFAICT.

A garage with a lot of power available. It would show up like a sore thumb from a helicopter with IR imaging, this was used to identify and prosecute people growing marijuana in their apartments.

This is obvious: Steve is inventing arguments from ignorance, combined with imagination, in an attempt to prove that his ideas are correct. I suggest he back up and consider a more scientific approach.

To transport one or a few liters does not require a sophisticated smuggling operation, to say the least.

Yes, that’s true, but one will need a lot more than deuterium to make a LENR bomb.

Even if we assume very optimistically that thousands of liters of heavy water would be required to cause a problem, this would still be an incomparably harder-to-control weapon ingredient than the status quo ingredients of enriched uranium or plutonium.

Muller points out that terrorists would focus on more realistic threats.

Think about how drugs are produced in large sophisticated factories in lawless or corrupt areas, and then smuggled around the world by the thousands of tons, despite strenuous enforcement efforts.

Enforcement efforts on drugs are half-hearted compared to what would be possible if a LENR bomb became possible. Drugs are simply not that much of a risk, and generally cause harm to people who voluntarily allow it. Yes, there is collateral damage, and it’s long been known that this is largely the result of attempts to control behavior through law enforcement, which is a piss-poor method, particularly when applied to what is widely perceived as a victimless crime.

So is it possible to “protect against this risk”? Yes! Note that LENR is apparently a ridiculously hard technical problem to crack—based on how little progress has been made in 30 years of work—and the scientific interest and institutional resources devoted to LENR around the world has been on a secular declining trend that seems to be asymptotically approaching zero.

The man has paid no attention to what is actually happening. Most LENR research is probably secret, first of all, until published, but there is funding being allocated, significant funding. He means “practical LENR,” and it is indeed a difficult problem, having to do with the necessary catalytic material. Research into producing that material is far, far, from what it would take to make a bomb. The military is interested in LENR, has long been, but not for bomb-making at all. For portable power. SPAWAR discovered that they could make a few neutrons with LENR. That was not announced until it was cleared for lack of risk. They are obviously being careful!

There is work under way on a hybrid fusion-fission reactor, based on those findings and more. As I’d expect Steve to know, and Muller covers this, what is needed for a fission reactor is not useful for explosions, not in itself, and terrorists can obtain nuclear materials. What the (cold) fusion would provide is a few neutrons, which would then cause the fission of U-238. This cannot sustain a chain reaction, and as soon as the thing gets hot enough, the neutron production would stop and the fission reaction would shut down. This could be used to operate at temperatures, possibly, up to the point at which the necessary catalytic structure will disappear. So this could be usable for power production, and NASA is looking at this for use in space.

(The latest thinking is that LENR takes place in the gamma and delta phases of metal hydrides, and those phases are not possible at high temperatures. I would worry a little about delta phase as having explosive potential, but that material may already have been made at high concentration under high pressure (5 GPa), and no anomalous heat production was reported. Because of the nature of the experiments, low-level anomalous heat would not have been observed, I expect. But it did not explode.

That was not done with deuterium, but with hydrogen, but there are LENR reactions reported with hydrogen. (The “nuclear ash” is not known for that. Storms thinks it would be deuterium, which seems roughly possible with the right catalysis. What is that?)

I think it very, very unlikely (but not “impossible”) that an explosive LENR material will be found. There has now been a lot of research looking at metal hydrides, and LANL apparently tried explosive pressurization of PdD. No effect was observed.

So, suppose we could make delta phase PdD, and for some reason it was stable enough to transport. (My suspicion is that it may not be stable, if it is highly reactive, which it would need to be to be usable as an explosive). Okay, if we know this, and if a serious risk is perceived, then the possession of X amount of that material could be made a serious criminal offense — or even more draconian measures could be taken. How about inspecting every place with deuterium sniffers that would detect deuterium levels above natural? Basically, what I trust is that humanity will find ways to deal with risks, and those ways may not be practical under the risk is high.


If serious scientists and institutions stop trying to figure out LENR, it just won’t get figured out period.

Steve does not know that. There are LENR experiments that I, in my apartment and basement, with materials I already have, could do, and one of these could result in a breakthrough. And that’s happening all over the world. The Russians are particularly active, but so are the Chinese and others.

This “nobody figures out LENR period” option is definitely safe, and probably feasible, at least on the decade timescale and maybe even century timescale.

It is safe only from an imagined risk, and, remember, the risk only exists if LENR is real, and if LENR is real, then practical applications become even more possible and likely than bomb risk, so there is a cost, a huge one. Perhaps global warming, which is already a serious risk for millions of people, and people die for lack of practical power generation, wars are fought over it, etc.

“Safe” is an illusion, especially when based on ignorance.

Sounds pretty good to me! To throw out that option a priori because we’re worried that a bad actor will figure out and militarize LENR on their own, and then the rest of the world will be surprised and “defenseless”, well I think that’s a bizarre thing to be worried about.

But it is not an option. I think that Steve should actually read the WHO report on the horse pox issue.

Bad actors hoping for better weapons would be exceptionally unlikely to do so via blue-sky LENR weaponization research, and exceptionally unlikely to succeed if they did try, for many obvious reasons.

I agree. Weaponization research is likely to fail. However, Steve appears to be assuming that his arguments will be accepted, and governments and corporation and scientists in general interested in LENR research will agree with him and voluntarily decide to cease research, or, even more strongly, to forbid it. Yet what is truly dangerous would not be LENR, but weaponization of LENR, and he seems to be assuming that if LENR is real, that therefore it could be weaponized.

I can, right now, with materials near my desk, make a few neutrons. (Without LENR.) Should those materials be illegal? (An Am-241 button from an ionization smoke detector, and a piece of beryllium metal).

I have almost a kilogram of heavy water, and I have palladium chloride. I could buy some uranium nitrate, it is available, and possibly test some of the claims of the former SPAWAR people. (They used uranium wire, but I would try codeposition). Anyone could do this. Should it be illegal? Or illegal to publish?

So at the end I find that your claim “To protect against this risk, we must understand cold fusion, or we will be defenseless if it is invented” is wrong on both counts—understanding is unlikely to offer much protection,

“Unlikely” is here as an assessment of someone who knows very little about LENR or “cold fusion.” This boils down to “Abd is wrong because I say so.”


and the “nobody figures out LENR period” strategy is in fact a path to highly reliable protection (though nothing is 100% guaranteed in this world).

But that, as well, is not “highly reliable,” and mostly because it just isn’t going to happen. We will figure out LENR, and both US DoE reviews recommended it, and Steve is here way out on a limb, making an argument that nobody with any knowledge is accepting. Further, we need to look at the contingencies.

LENR is not real. Prohibiting LENR research will not allow us to find out, so the question will remain open and more time will be wasted, so the “embargo” would have a cost (to the scientific enterprise). NO DANGER. COST of prohibition.

LENR is real. If so, practical power application is quite possible, even if difficult. Suppressing the research, then, could have a very high practical cost. Enormously high. BENEFIT.

LENR cannot be weaponized. NO DANGER, cost to prohibition.

LENR can be weaponized.

It’s difficult, not accessible to other than governments. NO DANGER (at least to ordinary thinking, governments are also dangerous).

It’s easy.

Countermeasures are possible. REDUCED DANGER.

 Countermeasures are not possible. DANGER.

And all this assumes a world where we tolerate that some people are highly motivated to inflict massive harm, even at the cost of their own lives. We fail to address the basic problems and try to put ineffective band-aids on them. It is possible that solutions to the problem would be relatively easy, but we put almost no effort into it.

Steve, first of all, appears to believe that (1) LENR is impossible, therefore the entire exercise is a waste, and is only attempting to create morality issues for others, not for himself, which is the opposite of sanity. and (2) if it is possible, weaponization is likely, whereas, in fact, if the scientific issues are not resolved, is a judgment impossible to make from knowledge, instead of fear.

One more thing: You say “Science intrinsically creates the risk of finding possibly harmful knowledge. In any field … What do you think is completely safe?” I don’t expect people to stop doing anything that isn’t 100% infinitely safe, because nothing is, but I do expect people to make good ethical decisions given available information in an uncertain world.

“Expecting people to make good ethical decisions” is also foolish. People don’t, often. Ethics are personal, often (though there is collective ethics and there are ethicists). Steve apparently wants people to make decisions that fit his personal ethics, but seems to be clueless about how to actually create this outcome. Not uncommon, to be sure, he was trained in physics, not political science or psychology or other relevant fields.

For example, laser isotope separation research might well eventually catastrophically undermine nuclear non-proliferation efforts, and therefore I think people shouldn’t do such research. (At least in the public domain, and perhaps not even in secret.) I think the same about LENR for the same reason. I think the same about research that reduces the competence barrier to making smallpox. Your “completely safe” criterion is an absurd straw-man, because a “completely safe” criterion cannot distinguish 10% risks from 1% risks from 1-in-a-googol risks, and cannot distinguish the obvious risks of laser isotope separation research from the infinitesimal risks of honeybee behavior research.

Steve wants the world to respect and follow his imaginations. (Does he? Why is he taking the time to write about them?) The example he has chosen (the horsepox research) has, if anything, made the world safer, not more risky. “Complete safety” would be a straw man argument if it were made as an argument. It was a question, that would then rationally lead to an assessment of probabilities, not a black and white “completely safe”/”unsafe” judgment. Probabilities and benefits must be balanced in the consideration!

“Non-proliferation efforts” are temporary and not ultimate solutions, which is generally true for all attempts to prohibit dangerous activities. “Dangerous” is, in the end, a political judgment, and do we trust the politicians?

I advocate for good, thoughtful risk-benefit analyses in all cases, and I have argued previously that such an analysis would find LENR research unethical, especially at the current very early stage of understanding and development.

And this is obviously an argument from ignorance. “We don’t understand it, therefore this is too dangerous to study.” Hence the title I gave the blog post, “Ignorance is bliss.” If we are ignorant and refuse to allow others to become knowledgeable, we must be assuming that ignorance is superior to knowledge. As the WHO pointed out, all knowledge carries with it the potential for abuse. That could include honeybee behavior. It just takes some imagination. How about weaponization of bees to carry an infectious agent, perhaps one that multiplies and reproduces itself from bee to bee? There is research into fungi that take over and dominate ants to reproduce themselves and infect other ants.

It’s simply unlikely, that’s all, and does not even occur to someone with poor imagination. Being a physicist, “nuclear” immediately creates an image of high danger, but, in fact, as Muller points out, the risk is not so high, and not just from the difficulty.

Believing that a field is bogus, a mistake, is not a qualification for assessing the risk involved if it is real.

It’s a perfectly good reason to pay little attention. If the infamous pink unicorn is claimed to be in a garage across town, I’m unlikely to go look. But if there is a credible report that might indicate reality, I’m not going to rush to think of how dangerous this knowledge might be! Maybe there is a reason why pink unicorns went extinct (assuming they ever existed). Maybe they were Truly Dangerous, so we hunted them down and killed them all, and then almost completely forgot about them. OMG! If anyone reports a pink unicorn, arrest them! (And send the military to completely isolate that garage.)

A serious risk-benefit analysis for LENR, as to “proliferation risk,” has probably already been done, by the military. No known military studies have claimed risk, and decisions made indicate “no significant risk.” (The risk found for this technology is that others develop it and we don’t, thus creating major harm to the U.S. economy, it’s called a “disruptive technology,” from that, not from “proliferation risk.”)

Serious effort can be put in, again, once reality has been established, because effectively legislating “no research” is way premature if the field is not clearly established. It would be legislating ignorance, and while there have been efforts like that (say, with stem cell research), they are generally agreed by scientists to be a Bad Idea, causing harm in terms of lost benefits. Still, ways were found to work around what was prohibited, so the prohibition might have created some benefit as well.

The risky research would be weaponization, which is very different from attempting to create a reliable effect at relatively low power. The argument here has been that low power could be scaled up to high power, and not just high power, but very high power density, because that is what weaponization requires. Ordinary scale-up by simply making devices bigger will not push it toward an explosion. Creating small-scale explosions could be weaponization research (because one could then conceivable make them bigger). Can we create active material and cause it to chain-react at high rate, so that it generates massive energy in microseconds? If we can do this with a few grams, then doing it with kilograms or thousands of kilograms, BANG!

This is very, very unlikely, not even conceivable from present knowledge of LENR. It’s enough of a possibility that I suggest that working with gamma and delta phase palladium deuteride be done with caution, because there is some risk. If one finds that this is a serious explosive material, publishing that would then raise the ethical issues. I suggest caution because it is “possible,” with a probability high enough to imply reasonable caution, not because it is likely or even moderately prossible. It is probably impossible, from what we know about LENR.

At this point, gram-scale gamma and delta phase PdD (or NiH, perhaps) would be made in a diamond anvil press at 5 GPa, which is not easily accessible! However, it is possible to accumulate those “super-abundant vacancy” phases, they are stable if deloaded, and they would certainly not be dangerous unless loaded with deuterium (or maybe hydrogen). What happens if they are loaded? If they vaporize, yes, this could create ethical issues. If they merely become hot, no. If they melt, no. What we know is that small regions in LENR-active material may get hot enough to melt the material, locally. All signs are that this shuts down the reaction. It does not continue in that location. What was called an “explosion” by some, the 1984 meldown, was, at most, a meltdown that destroyed the apparatus and probably caused a small chemical explosion. Not a “nuclear explosion,” like a fission or fusion bomb. And nobody has replicated that event. People talk about it sometimes and, in fact, a paper on it was presented at ICCF-21. The conclusion was that it was not a nuclear explosion, and it’s not clear what did actually happen.

If Steve wants to influence real decisions, he’ll need to learn much more about LENR than he knows already. I don’t expect this, because he believes it’s impossible. I would simply encourage him to put a little time into considering the impossibility arguments. They are quite weak, as a matter of general principles, not strong enough to contradict clear and confirmed experimental evidence, which exists.

The matter is far simpler than he thinks. Bottom line, how could we know that an “unknown nuclear reaction” is “impossible”? Wouldn’t that require omniscience?

BEC 1: Overview

Subpage of Steven Byrnes

Yeong E. Kim at Purdue and colleagues have proposed that, in cold-fusion experiments, the deuterons condense into a Bose-Einstein Condensate (BEC). In this state, he says, they can fuse, and then the energy is collectively absorbed by the BEC. (If you’re not familiar with BEC’s, here is a very simple introduction for non-physicists, [dead link] and I’ll explain more as we go.) According to him, this theory meets all the theoretical challenges of explaining cold fusion.

The “according to him” statement is not referenced, the link is to Byrne’s own list. Is Byrne being accurate here? If Kim actually wrote that, I would chalk it up to a certain level of hyperbole, because the theory simply does not do that, unless the list of challenges is very limited. There are two challenges listed by Byrne: the Coulomb barrier, and the branching ratio, and the second one assumes d-d fusion, and Kim is not actually considering d-d fusion, but multibody fusion.

Kim popped up on my radar when I was first studying LENR, as a co-author of an early paper examining cold fusion theories: Chechin, V.A., et al., “Critical review of theoretical models for anomalous effects in deuterated metals.” Int. J. Theo. Phys., 1994. 33: p. 617. convenience copy: Lenr-canr.org.

From that paper, the conclusions would seem apposite to quote here. Remember, this was almost 25 years ago, but there has been no major change on the theory front. Some individual theories have been abandoned, and some theoreticians have developed their ideas in more detail. At the time this was written, helium was not widely recognized as the main nuclear product, and that affects how they view the theories. Among other things, the helium evidence strongly indicates that the reaction does not occur in the bulk, but on or very near the surface.


We conclude that in spite of considerable efforts, no theoretical formulation of CF has succeeded in quantitatively or even qualitatively describing the reported experimental results. Those models claiming to have solved this enigma appear far from having accomplished this goal. Perhaps part of the problem is that not all of the experiments are equally valid, and we do not always know which is which. We think that as the experiments become more reliable with better equipment etc., it will be possible to establish the phenomena, narrow down the contending theories, and zero in on a proper theoretical framework; or to dismiss CF. There is still a great deal of uncertainty regarding the properties and nature of CF.

Of course, the hallmark of good theory is consistency with experiment. However, at present because of the great uncertainty in the experimental results, we have been limited largely in investigating the consistency of the theories with the fundamental laws of nature and their internal self-consistency. A number of the theories do not even meet these basic criteria. Some of the models are based on such exotic assumptions that they are almost untestable, even though they may be self-consistent and not violate the known laws of physics. It is imperative that a theory be testable, if it is to be considered a physical theory.

The simplest and most natural subset of the theories are the acceleration models. They do explain a number of features of the anomalous effects in the deuterated systems. However these models seem incapable of explaining the excess energy release which appears to be uncorrelated with the emission of nuclear products; and incapable of explaining why the branching ratio t/n >>1. If these features continue to be confirmed by further experiments, we shall have to reject the acceleration mechanism also.

It is an understatement to say that the theoretical situation is turbid. We conclude that the mechanism for anomalous effects in deuterated metals is still unknown. At present there is no single consistent theory that predicts or even explains CF and its specific features from first principles.

To learn about the theory, the best place to start is Kim’s publications page, which lists all his papers on the topic, with links to the full text. There is also a newenergytimes portal page, but it is not terribly useful.

That Kim page only lists “selected publications,” 34 out of “over 200,” and clearly not all of his work on LENR, since it does not list Chechin et al (1994). As to the NET page, it’s sketchy. It denies that Kim theory addresses Huizenga’s three miracles, with three words: No, No, and No. That’s Krivit “journalism.”

In the opposition-to-BEC-theory camp, my google search did not turn up too many resources. I found this one-paragraph argument against the theory by Ron Maimon, and this wikiversity message board discussion [link has been fixed] (especially the first paragraph), and this rationalwiki message board (there are a few insightful criticisms scattered around this long page). The criticisms echo each other, and I agree with them too. Really, all I’m planning to do is explain these arguments in more detail, so that a broader audience can follow along.

Great. Pseudoskeptics, faced with BEC theory, come up with some standard knee-jerk objections. Byrnes actually skewers one of them in another post, and here he “agrees with” some bloopers. Some objections are at least possible, and no theory is complete, so this or that defect can readily be pointed out. If it were not for the experimental evidence for nuclear activity in “cold fusion” experiments, we would not be arguing about whether it is possible or not, or about the explanation of an impossible thing. Of the first two conversations, Ron Maimon also wrote on Wikiversity, I think the “anonymous editor” was him, and those discussions were with me, and also the so-called RationalWiki discussion was also between me and a young snot, overproud of his knowledge, which was high for being maybe 16. That discussion was a relatively calm one, RationalWiki was wild back then. It still is, by ordinary standards, but is tame by comparison with what it used to be. Ron Maimon is quite intelligent, but citing RationalWiki is pulling unmentionable substances out of a very dirty pool.

Instead of pulling up the arguments then, I will assume that anything worth discussion will be mentioned again by Byrnes.

The arguments against Kim’s theory fit into two categories:

  • At room temperature, the deuterons cannot condense into a BEC
  • Even if the deuterons did condense into a BEC, they would not undergo nuclear fusion, for the same reason as usual: Because the Coulomb barrier prevents them from getting close enough.

If these are true—and I believe they are, as I’ll explain in future blog posts—then the theory really seems to have no value whatsoever!

Now, this could be an accident of language, but Byrnes just made himself a believer in his own analysis. Reality does not care what he believes.  Let’s look at these two points:

  1. Temperature. Temperature is a bulk measure, an average kinetic energy of atoms. The requirement for a BEC is not low temperature, but low relative momentum. A bulk BEC may require a low temperature, and Kim seems to be proposing a bulk phenomenon, whereas Takahashi proposes a very small BEC, starting generally with two molecules, i.e., four deuterons. BEC formation cannot be ruled out so simply.
  2. Byrnes has here made a statement that is rooted in avoiding quantitative analysis. There is always a fusion rate, because of tunneling. Ordinarily, the rate is so low that it is truly undetectable, but a BEC is a “condensate,” and atoms are closer together in such, than in an ordinary state. Takahashi actually calculates the process of collapse and the distance at closest approach, and the corresponding fusion rate. I am not qualified to assess his math, but other things being equal, I prefer the studied math of a highly experienced nuclear physicist to the knee-jerk opinion of a young PhD. I suggest a little more caution.

Oh, and if that’s not enough, I might suggest a third category of arguments against the theory:

Even if the deuterons did fuse while in a BEC, it would not be magical and special, it would just be a normal 2-body fusion process, creating neutrons, tritium etc. in quantities which would be easily detected in experiments because everyone in the room would die of radiation poisoning.
Hopefully I’ll get a chance to make this argument as well.

This makes a gigantic assumption. It’s been a while since I looked at Kim theory, but Takahashi is not proposing D-D fusion, but 4D fusion to 8Be, which would indeed end up with two helium nuclei.

Obviously, in his dozens of papers, Kim presents specific arguments against #1, #2, and #3. I hope to explain those arguments and why they are not convincing. This is a time-consuming task because the arguments can be pretty nonsensical! It will probably take me a few blog posts. But the good news is, we will get to learn some cool physics on the way!! 😀

Has Byrnes read the arguments yet? If not, his confidence is discouraging. We do not, in fact, know from observation what fusion in a BEC would do. And, remember, the real mechanism of cold fusion, if explained outside of a context of clear evidence that it exists, may well look nonsensical. My sense is that the established laws of physics will not be overturned, but some very unusual conditions will be found to be responsible. But I cannot know this until we know the mechanism (or, alternatively, the artifacts behind the appearance of cold fusion). Contrary to very common opinion, there are reproducible cold fusion experiments that have been widely confirmed. They just aren’t what people thought they wanted, they are not the kind of reproducibility that was being sought.

I’d still like to know where Kim claims that his proposal “meets all the theoretical challenges of cold fusion.” I’m certainly not satisfied by it.