Possibilities and perils

I just read an article that blew my mind. (Warning: paywall)

What Happens When Techno-Utopians Actually Run a Country | WIRED

Direct democracy! Universal basic income! Fascism!? The inside story of Italy’s Five Star Movement and the cyberguru who dreamed it up.

I will be blogging about it, but if we care to influence the future of the planet, we need to be aware of how the landscape has changed. It’s not just global warming, it’s not just a single populist leader, it is the development of fascism that masquerades as democracy.

I am very familiar with the “political philosophy” underpinning what the article is about, and wrote for years about the opportunity and the danger, and what it would take to create what I called direct/deliberative-representative democracy. Direct democracy on a large scale without protective structure is very, very likely to devolve into fascism, through the Iron Law of Oligarchy. Look it up if you are not familiar with it. Popular movements like term limits increase the power of the media and those who can buy the media. (Or, in this case, those who have developed the skill of manipulating popular, unprofessional social media. This is a current Very Big Story, about the 2016 U.S. Presidential election.)

There is no way around the Iron Law, but there are ways to harness it, but hardly anyone even recognizes the problem, much less solutions.

I may have been one of the writers who influenced the founder of that Italian movement; if not, it could have been one or more of a small group who pushed for similar ideas, such as Demoex in Sweden. This is stuff that is very appealing, but what is common is utter naivete about the dangers. The Italian experience demonstrates both the intense appeal and the depth of the danger.

“Leaderless” people are not free, they are in great danger of manipulation by people who have learned the lessons of mass psychology, and the behind-the-scenes founder of Five Star explicitly studied those concepts and used them to create personal power. Strong-Leader people are also not free, they are the slaves of the Leader. There is a synthesis possible, but it will not arise until the dangers are recognized and we pay attention to and develop structure that will ensure that we have the right to actually choose representatives we trust — and the right to take that delegation back at will if they lose the trust. The entire conventional system is based on win/lose, which defeats genuine chosen representation and becomes the dictatorship of the majority (or, often, worse, of a plurality). It can be done, but most people think and act, knee-jerk, from within the familiar, and strong-leader is familiar and so is direct democracy in small groups of highly interested people. More will be revealed.

The moment of truth has already passed

Mats Lewan continues to believe, long after the frauds of Andrea Rossi became crystal clear. From his blog, An Impossible Invention:

The moment of truth is getting close with launch on January 31st

“An Impossible Invention” is the title of Lewan’s book about Rossi and the “E-cat.” The reference is to the alleged impossibility of a device, an “energy catalyzer,” to generate heat from nickel and hydrogen. Lewan, a science journalist originally, was right, my opinion, to treat the “invention” as “possible,” not “impossible.” However, the problem isn’t impossibility, it is that Rossi was shown, by incontrovertible evidence in the trial, Rossi v. Darden, to have lied repeatedly. Case guide. 

On January 31, 2019, inventor and entrepreneur Andrea Rossi will hold an online presentation on the commercial launch of his heating device, the E-Cat. Thereby, the moment of truth is approaching for the carbon free, clean, abundant, cheap, and compact energy source that could potentially replace coal, oil, gas, and nuclear, and also solve the global climate crisis.

This is fluff. The moment of truth passed long ago. Rossi claimed to have a 1 MW reactor ready for sale before the end of 2011. That reactor was actually purchased by Industrial Heat, for $1.5 million, and delivered in 2013. With that, and a payment of $10 million, Rossi also agreed to disclose whatever was needed to build the reactors, and to license the technology to Industrial heat, for regions covering half the planet. In addition, subject to a “guaranteed performance test,” IH was to pay Rossi $89 million more. Rossi remained free to market or use the technology independently in the other half of the world.

It appears that Lewan has refused or failed to read the evidence from that trial, consisting of documents, almost entirely unchallenged, plus depositions under oath. We can assume that the unchallenged evidence is authentic, there are detailed responses from both sides, in motions to dismiss and answers to those.

The trial began, the jury was seated, and opening arguments were made. It was obvious to me how this was going to go. Rossi’s claim for $89 million was going to be rejected, for many reasons, IH was not going to be able to recover their investment paid to Rossi (because of estoppel), but IH would be able to claim fraud from the “Doral test,” and be able to collect damages from Rossi and those who assisted him perpetrate the fraud.

Obviously, Lewan could dispute that, but not reasonably unless he actually looks at the evidence, evidence that I studied intensely, in order to make it available.

Since I started reporting on Andrea Rossi’s E-Cat technology in 2011, he always told me that his main goal, and the only thing that would convince people about the controversial physical phenomenon it was built on, would be to put a working product on the market.

What is truly odd about Lewan is that he says this, but actually ignores it. There was an allegedly “working product” on the market in 2011, with a price of $1.5 million, and it was purchased by an eager customer, IH. The guaranteed performance test did not take place in a timely fashion. Rossi blames IH for that, but the evidence shows otherwise, but Rossi then convinced IH to allow the reactor to be installed in Florida for a sale of power to a “customer” he had found, and he argued that an independent customer would be more convincing as a demonstration than what IH had proposed, an installation in North Carolina in a related company.

And Rossi clearly represented that the customer was actually Johnson-Matthey, Rossi’s emails show how he then attempted to create plausible deniability. A jury would have seen right through that. The customer was, in fact, a company set up by Rossi’s attorney, Johnson, who was also the President of Leonardo Technologies, Rossi’s Florida company. There was no “chemical company” other than Rossi’s activity, he controlled it entirely.

But if the reactor worked, so what? At least that is what many on Planet Rossi think. IH claimed that they had been unable to create any success with Rossi reactors, other than what appeared in some tests, later considered to be artifact (such as the Lugano test: IH had made that reactor).

This was the ultimate market test. IH was not about to pay $89 million for a “test” that did not satisfy the terms of the Agreement, but, because, the thinking would go, perhaps Rossi, known to be paranoid, had not disclosed to them the “secret.” So, having paid Rossi $11.5 million (and more in various ways), they would have wanted to keep the license, just in case it turned out to work.

They had four or five lawyers sitting there in the trial in Miami, it was costing them millions of dollars. They might not have been able to recover their legal costs, and there would be other reasons to avoid a trial. They are working to support inventors, and prosecuting a fraud claim against an inventor would not be the kind of publicity they would want.

So when Rossi, having claimed for a year that he was going to wipe the floor with Darden and Industrial Heat, proposed a walk-away, that no money change hands, he gives up his $89 million claim, and they give back the reactors (there were actually two 1 MW plants plus other prototypes), and the license was cancelled, they accepted.

They knew more about the Rossi technology than anyone other than Rossi. They had worked for about three years trying to get it to work. If it worked even modestly well, it would have been worth many billions of dollars, maybe trillions. With that knowledge, instead of spending a few million more, they chose to walk away, and focus on other LENR technology.

To me, this is beyond-a-reasonable-doubt evidence that Rossi technology was worthless. And the kicker: After the case settled, Rossi had people screaming for a plant, and he had two of them. If the technology actually worked, he could have installed it in a real customer’s facility, or could have sold heat to heating co-ops in Sweden. He’d have been making money hand over fist.

Instead, he dismantled the plants, destroying them, and focused on his “improved product,” which is what the upcoming demo is about.

Now, eight years later, after events taking unexpected and amazing turns which I told in my book An Impossible Invention and in this blog, Rossi claims to be ready to do so. His plan is to sell heat from remotely monitored devices at a price per kWh 20 percent below market price, with no carbon emissions from the operation of the devices.

The book did not cover the revealed information about the IH/Rossi affair. He has mentioned it on the blog, with shallow, very incomplete coverage that gives full voice to Rossi deceptive descriptions. Lewan has become a Rossi shill.

The Doral installation was a sale of power at $1000 per day per megawatt-day. So he already had, over eight years ago, a plant that could be installed to do what he now “plans” to do. Unless he was lying, then, and if he was lying then, why would we imagine he is not lying now?

(Note: The business model of selling a service rather than a product is a strong megatrend driven by digitalisation and by internet of things, making remote monitoring more effective, and it is already used by e.g. Rolls-Royce and GE, selling flight hours rather than aero engines).

This is basically irrelevant. Software is also licensed, not sold, etc.)

While this already implies a substantial cost-saving for the customers, it is most probably only the start of what the E-Cat technology can provide ahead, if it works as claimed.

There is no news here, only a “plan” which is not binding on anyone. On what basis does Lewan claim “probable.” Yes, he hedges it, “if it works as claimed.” Does he attempt to assess the odds of it working? Would past performance be a way of assessing this. Some who has failed many times to deliver what he promised, how much credence should be place on new promised, in advance of a independently testable product?

At the online presentation (more info at http://www.ecatskdemo.com) Rossi plans to show a two-hour video of a device already in operation, reportedly heating an industrial premises of about 250 square meters in the US to 25°C since Nov 19, 2018. At the presentation, he will provide details regarding the commercial launch, but here is what I have been told and what I have concluded so far:

We know that what Rossi says is utterly unreliable. Does Lewan know that? Has he looked at the evidence, or does he just run on his gut?

A demonstration like that described can be faked six ways till Sunday. Rossi claimed that the reactor in Florida actually delivered a megawatt for most of the one-year period. Based on measurements that he controlled, completely. The problem was that a megawatt in that warehouse (is this the same “industrial premises”?), given the lack of a powerful heat exchanger, would have made it uninhabitable, fatal to occupants. That was one of the facts to be brought out at trial. Rossi, last minute, contradicting what he had written on his blog for a year, claimed to have made a heat exchanger, didn’t keep receipts or take photographs, and he used the labor of guys who drive around in trucks looking for work, and … it would have had to have been there for the whole year, without anyone visiting noticing it, and it would have been noisy as hell and very visible. No, he lied again, this time under oath, so that’s why his attorney had no trouble convincing him to settle if he could. He was facing not only losing millions of dollars, but also a possible criminal prosecution for perjury. Rossi was used to lying to the public, which is not illegal. He was playing a new game in federal court, where lying is a Very Bad Idea.

Lewan then goes on to give the alleged characteristics of the E-Cat SK. It is all “what he has been told,” and he reports what he was told with no sign of caution or skepticism. Lewan has had enough experience with Rossi to know he can be deceptive. This is my theory: if he were to ask inconvenient questions, he’d lose his access to Rossi. And he’s now made it a business, selling the book, which he is planning to update.

These characteristics are entirely Rossi Says. When we talk about generations of development of devices (Lewan calls the SK the “fourth generation”), it’s assumed that the earlier generations worked and the later generations are improved. If in mercato veritas, what is the truth of the earlier generations?

Bottom line, they were worthless. If they actually worked, they were worth, even as prototypes, at least hundreds of millions of dollars. The market has spoken the truth, but Lewan is ignoring it.

Lately, I have reported little on the E-Cat, simply because there has been essentially no new information that could be confirmed. Also in this case, in theory we will not be able confirm any of the claims presented, specifically since the existing customer will not be disclosed at the presentation on Jan 31, as far as I know.

There was a great deal of information revealed in 2016, in the trial. Lewan ignored it, relying only on what Rossi told him, apparently. Now, we still have no verifiable information. So why would January 31 be the “moment of truth.” Why is Lewan hyping this non-event, where Rossi will just present more smoke and mirrors?

But let’s assume that the there’s no working E-Cat device. Then either Rossi is fooling himself, and there’s nothing that makes me believe this now, or it’s a fraud, which hardly makes any sense at this point.

We already know that Rossi lies and that if the Doral plant worked, it was not working at anything like the level claimed. If it were a weak technology, but working, IH would have held onto fiercely. They could afford it. (Prepping for the trial, Rossi claimed that IH wasn’t paying because they didn’t have the money to pay, but, in fact, IH had lined up $200 million, plenty to pay Rossi and have money for development, but … they were not about to spend that when the frikkin’ reactors didn’t work!

It wasn’t even a weak technology. Before they made the deal with Rossi, they knew Rossi had a checkered past, but they decided they needed to find out. So they found out. It didn’t work.

It also “hardly made any sense” that a fraud would sue their defrauded customer. But he did. Basically, Lewan appears to have no idea how Rossi might actually think and operate, based on the experience of those who worked closely with him for years.

In the fraud case, the E-Cat SK would be an electric heater consuming as much power as it outputs. But after at least a decade of hard work, without asking money from any third party, having earned USD11.5M from his ex US partner Industrial Heat, why would Rossi get back now and sell heat at a loss? To a customer that would immediately discover the fraud by looking at the electricity consumption of the device?

This is absolutely appalling. Rossi asked for and got funding from Ampenergo, so when IH bought the license from Rossi, Ampenergo was part of the deal, signed on, and IH paid Ampenergo millions in addition to what they paid Rossi. And then Rossi not only asked for and received $11.5 million from IH, he was also demanding $89 million. In Doral, there was no customer, but the fake customer agreed to pay $1000 per day for power, and Rossi approved invoice requests for IH to issue for those amounts. IH wasn’t convinced that there was a real power sale; for whatever reason, they didn’t issue those invoices, but the customer had no income, no business, so who would have paid those invoices? Obviously, Rossi was willing to pay invoices, and it would then have strengthened his case to collect the $89 million. Spending $360,000 to gain $89 million? Lewan has the brain of a cockroach. Sorry, cockroaches, you are smarter than that.

We don’t know anything about the conditions of a power sale. We don’t know how large the container for the reactor is. It must be large enough to protect the reactor from intrusion, and what kind of power source could be inside? We don’t know. This is all speculation, not news. Bottom line, a sale of power could be a fake demonstration of power generation, and, in addition, what if the “customer” is in collusion with Rossi? What would be the goal? Most likely, to gain investment.

Let’s suppose this is a 40 KW reactor.Say that power costs 10 cents/kW-h, that’s $4 per hour, $48 per day if it is 24/7, or under $18,000 per year, if the input power were free. Rossi could easily afford that for a time, and being able to report a satisfied customer — and he could create more than one –, how much more investment could he obtain?

Clearly, only when at least one customer, having used the heat from the E-Cat SK for some time, will speak publicly about the service, the moment of truth will arrive.

No. There was “one customer” in Florida, apparently an independent company, with a lawyer representing it. In fact, it was a blind trust, in fact, it was not independent, and did not, contrary to the installation agreement with IH, measure the heat delivered independently. Lewan doesn’t think of the possible problems because he has paid no attention to what actually happened in Florida.

I looked above, and Lewan did hedge his claim. The moment of truth is not January 31. It is rather “the moment of truth is getting close with launch on January 31.” Except this is not a “launch.” With a product launch, the product becomes available. Is a product becoming available?

Once again, Rossi claimed an available product, a “1 MW reactor” in 2011. So was that “close to launch”? Lewan is more like “out to lunch.”

Meanwhile, everything else that I have observed and witnessed during these eight years, including my own measurements on the previous E-Cat versions, and the one-year test of a one megawatt plant in Doral, FL, during which Rossi started developing the E-Cat QX with its electronic/electromagnetic control system, indicates that the E-Cat is a working device, although many would call it An Impossible Invention.

About that “one year test” in Florida, it didn’t work, it was fraud. “Impossible Invention” is totally irrelevant. All the prior tests had glaring defects. Lewan was present for the Hydro Fusion test, which failed, and at which Rossi argued that they were not measuring input power correctly. Lewan argued with him, apparently think that this was just an honest mistake. But if Rossi could make that mistake with the Hydro Power test, how about with his own? Again and again, basic problems existed with the tests, never resolved because Rossi kept changing the device operation, so a possible artifact in one test could not be verified (or otherwise) in the next.

This is all obvious to many, many observers, so why not to Lewan?

By the way, I would like to share my impression that the groundbreaking control system of the E-Cat QX and the SK, is the result of a kind of dreamteam consisting of the genius Andrea Rossi, with elusive and creative ideas about physics and about what he thinks could be possible, and of electric engineer and computer scientist Fulvio Fabiani, not only being an expert on electronics but also being capable of interpreting Rossi’s wild and hard-to-grasp ideas, transforming them into real electronic circuits actually performing the job Rossi had in mind.

What a flack! Fabiani played a role in Florida, and I’m not going to go over, it, but he was in line to lose substantial sums from his professional incompetence. He destroyed evidence belonging to IH.

I will develop this story further in the updated third edition of my book, which I hope to be able to conclude within a year or so, once the moment of truth has arrived.

And when the moment arrives, the E-Cat technology will most probably start providing clean, cheap, abundant, and sustainable energy to everyone in the world, in combination with solar and wind (which are a long way from replacing fossils on their own, and furthermore also require problematic large scale world-wide chemical battery implementations for energy storage).

Until then, the champagne remains on ice. And when I open it, I will be thinking of Sven Kullander and of late Prof. Sergio Focardi who played a fundamental role, helping Rossi to develop the E-Cat technology.

And Lewan has announced (twice? Do I remember that correctly?) a New Energy conference, featuring Rossi technology. He has lost all credibility. Yes, I see that he’s announced again:

UPDATE: The New Energy World Symposium was postponed in March 2017, waiting for an upcoming commercial launch of LENR based power. Read more here.

UPDATE 2: An online presentation regarding commercial launch of LENR based power will be held on January 31, 2019. Please get back to this blog for a report shortly.

I’m happy to announce that registration for the New Energy World Symposium is now open, with an Early Bird discount of EUR195 valid until February 17, 2018.

He knows that January 31 is unlikely to be the “moment of truth.” So why is he plowing ahead?

Update

Andrea Rossi today published, on ResearchGate, a “preprint,” E-Cat SK and long range particle interactions. This is a theoretical paper standing on unverifiable experimental results, but it does disclose some data not seen before.  The paper begins:

The E-Cat technology poses a serious and interesting challenge to the conceptual foundations of modern physics.

There is no challenge until there are confirmed experimental results. Previous reports of SK performance were based entirely on RossiSays, with no verification allowed of necessary measurements. The device demonstrated in Stockholm was periodically stimulated with a high voltage, which would strike a plasma, which would then have low resistance. That strike would be relatively high voltage and would input power into the system. No measurements were allowed of the full input power, or, in fact, even of operating power, i.e., both the voltage and current in steady state operation.

This paper gives this description:

5 Experimental Setup

The plausibility of these hypotheses is supported by a series of experiments made with the E-cat SK. The E-cat SK has been put in a position to allow the eye of a spectrometer view exactly the plasma in a dark room: an ohm-meter has measured the resistance across the circuit that gives energy to the E-Cat; the control panel has been connected with an outlet with 220 V , while from the control panel departed the two cables connected with the plasma electrodes; a frequency meter, a laser and a tesla-meter have been connected with the plasma for auxiliary measurements; a Van der Graaf electron accelerator (200 kV ) has been used for the examination of the plasma electric charge. Other instruments used in the experimental
setup: a voltage generator/modulator; two oscilloscopes, one for the power source and one for monitoring the energy consumed by the E-Cat; Omega thermocouples to measure the delta T of the cooling air; IR thermometer; a frequency generator.

There are no useful details in this. What was the experimental procedure? In what is a plasma created? How is the plasma created? “Energy consumed” is a standard Rossi trope. Energy is not consumed, unless there is an endothermic reaction, we could then use that language.

The voltage across the device is given as 0.25 volt and the current 3.2 mA. He claims a resistance of 75 ohms. Previously he claimed that the operating resistance was zero. 3.2 mA might maintain a plasma, but would not strike it. Periodically, in the Stockholm demonstration, there was a zapping sound and a flash of light. He was striking the plasma, which would take a far higher voltage. There is no mention of striking a plasma in the paper.

In any case, no confirmed experimental results, no challenge.

 

Jimbo Wales and “lunatic charlatans”

Looking at recent developments on Wikipedia with “fringe” and “quacks,” I’ve found many symptoms of a systemic corruption, and this will show how the project lost its direction, at core and in a failure to honor the original community intentions, it’s become quite explicit. This started with looking at the user page of Roxy the dog. Wikipedia made what may have been a fatal error in not only allowing anonymous edits (probably necessary and highly useful) but also in allowing advanced privileges for anonymous accounts. In this, it deviated widely from academic traditions. It eliminated the “responsible publisher” for itself, creating mob rule.

This protected the Foundation, but not the project. This is classic: organizations are formed for purposes, but their own survival, if it comes into conflict with the purpose, becomes a priority. So if the trial of “community governance” fails — in the absence of clear structures that create responsible actors — nothing can be done. It’s up to the community, not the site owners. Wikipedia is famously not a reliable source. Why not? Precisely because there is no responsible publisher!

The possibility existed for a community project to become more reliable than any such effort in history. That is, in fact, why I worked on Wikipedia as long as I did. But the radically unreliable governance, vulnerable to participation bias (whoever happens to show up in specific discussions, and where some kinds of factional canvassing are allowed, plus the possibly random nature of who closes discussions, where bias in closing could be very difficult to detect, and, if detected, they shoot the messenger), led to a conclusion that the situation was unworkable.

Wikipedia will be replaced by a project that harnesses what Wikipedia has done, but that adds reliable governance and responsibility. This may be for-profit or nonprofit, it could be done either way.

It was clear to me at one point that Jimbo Wales (with Larry Sanger the founder of Wikipedia) was interested in governance reform. However, something was missing, and I’m coming to think that what was missing was an understanding of neutrality. He almost had it, but it’s clear that knee-jerk “popular,” not academic or scientific, responses, very obviously not neutral, took over for him. And this then explains, in part, how “popular factions” came to dominate Wikipedia, as many have noted. They lose, sometimes, their control is not absolute, but it creates a steady pressure and, over time, it’s apparent to me, the project has devolved away from neutrality, and a particular faction has, many times, opposed neutrality and has declared allegiance to a point of view, and they act to push that point of view.

Anyone trained in journalism will recognize the problem, how it infects the language and overall tenor of pages. Blatant violations of neutrality policy, misrepresentations of sources, in favor of attempting to create in readers POV impressions, are, in some areas, practically the rule rather than a transient exception. Revert warring is tolerated, if done by factional editors, who are considered “valuable volunteers” precisely because they work tirelessly for their point of view.

Editors with contrary points of view are isolated and sanctioned and topic- or site-banned. Editors promoting SPOV (“Scientific point of view,” when they go beyond limits in that promotion, may be sanctioned, but also are regarded as heroes. And so if they are actually banned, they often come back. Wouldn’t you?

This is what Roxy the dog has from Wales:

“Wikipedia’s policies around this kind of thing are exactly spot-on and correct. If you can get your work published in respectable scientific journals – that is to say, if you can produce evidence through replicable scientific experiments, then Wikipedia will cover it appropriately.”
“What we won’t do is pretend that the work of lunatic charlatans is the equivalent of ‘true scientific discourse’. It isn’t.[1][2]

Roxy the dog uses this as I’d expect, to justify a series of claims of being justifiably biased. First, what exactly did Wales say, in what context.?

Wikipedia developed a procedure for creating a neutral project and he is referring to it, but he overspecifies that procedure, narrowing it in a way that favors the bias Roxy the dog displays. Was this merely accidental, incautious?

and, in fact, it’s obvious. From that page:

Wikipedia’s co-founder Jimmy Wales this week sent a clear signal to skeptics who edit the user-created encyclopedia – he agrees with our focus on science and good evidence. He did this by responding firmly in the negative to a Change.org petition created by alternative medicine and holistic healing advocates. His response, which referred to paranormalists as “lunatic charlatans”, was widely reported on Twitter.

I’ve been recommending skeptics pay close attention to Wikipedia since the earliest days of this blog, almost six years ago. Susan Gerbic took up that gauntlet and created her wildly successful Guerrilla Skeptics on Wikipedia project.

In the last year or so, the success of Susan’s project has gotten many paranormal and alternative medicine advocates riled up. They’ve repeatedly floated conspiracy theories that skeptics are somehow rigging the game on Wikipedia, or even bullying opponents off the site. Even personalities like Rupert Sheldrake and Deepak Chopra have gotten involved. None of these accusations have been supported by facts, and both Sheldrake and Chopra have been subsequently embarrassed by their own supporters’ rule-breaking behavior on the service.

This is common.

There is skeptic organization and this blog is proud of it. But if others point to organization, it’s a “conspiracy theory.”

Indeed, I have seen over-reaction, suspicion that, say, drug companies are paying editors to promote statin drugs and attack cholesterol skeptics. I find that implausible, but this is what happens where there are organizations that operate behind the scenes.

Sheldrake and Chopra have popular support, and people with popular support will be defended by some, often people with no real understanding of how Wikipedia works, and so they violate rules. But wait! Wikipedia Rule Number One, promoted by Wales himself, was “If a Rule prevents you from improving or maintaining Wikipedia, ignore it!” (WP:IAR)

I used to point out the Corollary, that if you have never been blocked for breaking the rules, you are not trying hard enough to improve the project.

The vision of the original Wikipedians has been lost, and this was practically inevitable (see  Iron law of oligarchy), if protective structure was not created, and it was not.

Wales response was to a petition asking for reform.

As is common with reform efforts, what might be a valid objection to the Wikipedia status quo was mixed with lack of understanding of how Wikipedia operates, and a point of view. The title of the petition shows a lack of understanding of the purpose of Wikipedia and the process of creating an encyclopedia.

Jimmy Wales, Founder of Wikipedia: Create and enforce new policies that allow for true scientific discourse about holistic approaches to healing.

I will list problems with this request:

  1. Wales was not in charge of Wikipedia, he was the Founder, not the Governor. (In the other direction, he remained influential.)
  2. Wikipedia is not a site for “scientific discourse.” Wikiversity was, and could have remained so, but that was demolished, ultimately, by the faction, early this year. It was trivial to create neutral discourse, and it worked for years.
  3. The policies on inclusion were not the problem, the problem was lack of workable enforcement structure. The structure worked, though very inefficiently, for handling vandalism and isolated point of view pushing, but, increasingly, as factions developed power, poorly with factional point of view pushing.

Wales responded. 

MAR 23, 2014 — No, you have to be kidding me. Every single person who signed this petition needs to go back to check their premises and think harder about what it means to be honest, factual, truthful.

Wikipedia’s policies around this kind of thing are exactly spot-on and correct. If you can get your work published in respectable scientific journals – that is to say, if you can produce evidence through replicable scientific experiments, then Wikipedia will cover it appropriately.

What we won’t do is pretend that the work of lunatic charlatans is the equivalent of “true scientific discourse”. It isn’t.

The blog claims that the organizers of the petition were “tone-deaf,” because they quoted Larry Sanger, thus, allegedly, irritating Wales. Sanger was quoted in the petition:

Larry Sanger, co-founder of Wikipedia, left the organization due to concerns about its integrity. He stated: “In some fields and some topics, there are groups who ‘squat’ on articles and insist on making them reflect their own specific biases. There is no credible mechanism to approve versions of articles.” 

Sanger’s comment was a simple conclusion matching what many, many, with high experience with Wikipedia, have found. That happens. It happens in all directions, but . . . factions that represent the “fringe” are, by definition, not popular, and that condition in the population will be reflected in the editorial community, so these factions are readily identified and their efforts interdicted, whereas the faction that is biased toward a popular point of view, can operate with far higher impunity, and in the absence of neutral enforcement, that bias can dominate.

This happened to some extent with traditional encyclopedias, but these were generally written with high academic integrity. Wales became confused on this issue, and was, himself, tone-deaf. Many have complained, and the complaints are routine and remain common. Wales only looks at what was wrong with the petition, and fails to practice what he preaches:

to check their premises and think harder about what it means to be honest, factual, truthful.”

So Wikipedia sails on, undisturbed by self-examination, supporting the “Scientific Point of View,” which is an oxymoron.

Rather, the Pillars of Wikipedia include one that would, if followed, establish journalistic and academic integrity:

Wikipedia is written from a neutral point of view
We strive for articles in an impartial tone that document and explain major points of view, giving due weight with respect to their prominence. We avoid advocacy, and we characterize information and issues rather than debate them. In some areas there may be just one well-recognized point of view; in others, we describe multiple points of view, presenting each accurately and in context rather than as “the truth” or “the best view”. All articles must strive for verifiable accuracyciting reliable, authoritative sources, especially when the topic is controversial or is on living persons. Editors’ personal experiences, interpretations, or opinions do not belong.

Wikipedia proposed a solution to crowd-sourcing, to allow it to be verifiable. “Reliable” source does not mean “correct.” It refers to independently published sources, presented with a neutral tone. Stating an interpretation as if fact without attribution is not “honesty.” It’s easy to convert, say, a non-neutral interpretation (which might be found in a reliable source) into a fact by attributing it. “According to . . . ”

Yet there are “skeptical faction” editors inserting their own interpretations as if fact, even about living persons, or entire fields. Because I just noticed it, here is an example, about Gary Taubes:

This is in the lead (current version), which should, by the guideline, be rigorously neutral, enjoying high consensus. The lead has:

Some of the views propounded by Taubes are inconsisent [sic] with known science surrounding obesity.[3]

The source is a book review, and such a review is the opinion of the author, particularly if it is an off-hand comment. What the review actually has, besides praise for the book (“… has much useful information and is well worth reading “):

some of the conclusions that the author reaches are not consistent with current concepts about obesity.

Are “current concepts” the same as “known science”? In fact, Taubes is challenging common concepts, explicitly and deliberately, as not being rooted in “known science,” i.e., known through the scientific method. This has been his theme for his entire career. The editor, however, believes what he has written and so considers that interpretation of the source to be a simple restatement.

The reviewer was not precise. “Current concepts” has a lost performative. Whose concepts? I used “common” as a vague term that would cover what I think is true. The concepts Taubes is challenging became common about forty years ago, through a political process that was only peripherally scientific. Documenting that has been much of Taube’s work.

This begins the lead:

Gary Taubes (born April 30, 1956) is an American journalist, writer and low-carbohydrate diet advocate.

Is he? This was there until a few days ago:

Gary Taubes (born April 30, 1956) is an American science writer.

To the faction, many examples can be shown, “low carbohydrate diet advocate” is a dog whistle to call skeptical attention to a person, who, in other contexts , might be called a “fad diet promoter,” “quack,” and “charlatan.”

Remember, verifiability not truth. The statement about “diet advocate” is not sourced. It’s misleading. What Taubes has been advocating is twofold:

  • improved public understanding of the history of the lipid hypothesis and the demonization of fat, as well as the evidence of the “diseases of civilization” being associated with high refined carbohydrate consumption,
  • but, more important (certainly to him), the encouragement and facilitation (read funding) of scientific research into diet. Taubes is not a ‘believer,” but he has drawn some conclusions and has been acting on them. That is normal in science. Wales wrote:

If you can get your work published in respectable scientific journals – that is to say, if you can produce evidence through replicable scientific experiments, then Wikipedia will cover it appropriately.

First of all, he was misstating the actual policy. “Published in respectable scientific journals” is not the actual standard, and such publication can happen without “replicable scientific experiments,” that is only one aspect of science, and the reliance is not on “replicable,” but on “confirmed,” i.e., actually replicated, as shown in peer-reviewed reviews of a topic, secondary sources. Many facts can be reported (with maximum freedom, by guidelines) if attributed. The attribution should be to a reliable source, but the source may be weaker, though still reliable. The skeptical faction uses their own factional publications, that focus on “debunking” and are not neutrally peer-reviewed by experts in the fields, as if reliable source, it’s been common for years, whereas independently peer-reviewed secondary source reviews are excluded by the faction as “junk” or “fringe believer author.”

These are obvious violations of the neutrality pillar, but are tolerated because of a false opp0sition as reflected in Wales’ defense of Wikipedia.

A paper that was invited by a major peer-reviewed journal of high reputation, with Gary Taubes as one of the authors:

Dietary fat and cardiometabolic health: evidence, controversies, and consensus for guidance June 13, 2018

This review treats the topic with academic tone. It presents a variety of major points of view. This is what Wikipedia could be like, were it actually supporting science. Instead, it is supporting a highly judgmental and often fanatic debunking point-of-view.

Another example: Wales wanted to see “replicable experiments.” That is not required for notability, Wales is actually substituting his own ideas for the policy, but . . . I was banned from cold fusion on Wikipedia and the claim was made that I was promoting it, and this was often connected with claims that “cold fusion” is “pseudoscience.” In fact, what I was promoting, what was actually important to me at the time, was Wikipedia neutrality and genuine consensus process. However, when I was banned from the topic, I then investigated “cold fusion” more thoroughly, and eventually wrote an article, published in a significant journal, which would, in theory, satisfy the claims Wales made:

Replicable cold fusion experiment: heat/helium ratio

Okay, a review. Check. Peer-reviewed. Check. Describes multiple confirmations of a crucial experiment, that demonstrates that there is a real anomaly, that looks like it could be fusion (but probably not what most physicists would think of). Check.

Okay, is that cited? I don’t know if anyone attempted it. It was cited on Wikiversity. Much older and weaker sources on claims of helium detection (deprecating them) have been cited on Wikipedia, and remain. As I was about to be topic banned for the second time, I put up another review in a journal of very high reputation for consideration on the Reliable Source Noticeboard. It was found usable as reliable source. And after all that, was the source allowed? No. Immediately removed every time presented.

Status of cold fusion (2010)

Peer-reviewed review in a major multidisciplinary journal, Naturwissenschaften. Check. Stronger source than any other source used in the article. If editors think it was a mistake, it could be attributed.

See the arguments against it on RSN. That discussion was narrow and focused but was never “closed.” Consensus was clear. The paper is RS, and as with all sources, to be used with appropriate caution. Just because something is in reliable source does not make it “truth,” it makes it notable. And wikipedia was properly founded on notability, established by what is found in responsible publishers.

So what happened then? I have made the point often that the major problem with Wikipedia has been inefficiency. To establish what should have been accomplished by a reference to policy and guidelines, a matter of a few sentences, took a massive discussion. A responsible publisher would go bankrupt if their editorial process were like this.

There are plenty of Wikipedia editors who understood the policies and attempted to apply them neutrally. They burn out, faced with editors who ignore the policies, are persistent, and who are enabled to continue this, year after year.

removes reference to Storms (2010) based on argument rejected at RSN. Editor: ජපස, who has changed his name many times. He is the one who made the argument about Storms being an editor. That was an attributed reference, clearly neutral. This reverted the edit of Enric Naval.

Eventually, in 2015, the bibliographic reference to Storms (2010), and another citation of it, were removed by JzG, a highly involved factional editor and administrator who had been reprimanded by the Arbitration Committee for his actions with regard to cold fusion. Apparently nobody noticed. Jzg removed the reference to the 2007 book, and the 2010 journal review of cold fusion. His edit summary:

(pruning some WP:PRIMARY, including for example a book review written by a True Believer. We have sufficient high quality sources that we don’t need to dumpster-dive.)

These are the arguments that completely failed to be accepted at WP:RSN. Are there stronger sources by Wikipedia RS standards and the standards for science topics? What was left was weaker, or if not weak, substantially older.

None of these were primary sources, and he’s highly experienced, so . . . he lied, they were all secondary. (2007) was published World Scientific, an academic press, and (2010) was discussed above. The Book Review reference is unclear. JzG also removed material cited in Simon (2002), which is an academic secondary source review (a book), not a “book review”). He did remove from the bibliography one primary source (at least arguably so), Shanahan (2006). There was an appalling discussion in talk, no consensus, and the editor objecting was “reminded” about discretionary sanctions, which was essentially a threat that he could be blocked. This was a blatant and smug display of factional POV editing, and, as usual, without consequence, JzG (and William M. Connolley), sailed on, undisturbed, as they have for years. (In two cases, I took them to the Arbitration Committee, JzG was reprimanded, Connolley was desysopped. But the net effect was, with extensive effort, long term, zero. Discretionary sanctions were established as a result of the second case, (with neutral enforcement, a good idea), but it has only been used to support the skeptical faction and threaten or block anyone appearing to have a different point of view.)

In 2015, Current Science published a special section on low-energy nuclear reactions. It included a number of reviews of aspects of the field, written by major researchers (and one journalist, me). There was mention of this in the article that resisted removal, it’s still there. However, none of those papers are cited in the article, in spite of being recent specific reviews of aspects of the field, on topics discussed in the article.

Wales is either ignorant about what actually happens on Wikipedia, or he’s lying. I prefer the former interpretation, but I also hold him responsible for maintaining his ignorance in spite of complaints. Instead of actually investigating the complaints, or setting up a review process, he smugly proclaimed an extreme interpretation of the policy that then, very clearly, encouraged the SPOV-pushers. I’ve seen a shift since that time, and this might explain it.

No, if one does research and gets it published in peer-reviewed journals, it is inadequate to shift the Wikipedia balance, because the balance is maintained in the impressions and interpretations of editors, and it’s very well-known that when people have committed themselves to a position (by using language like “charlatan” and “fringe believers” and “crank”) they become resistant to change, and will continue to invent justifications and reasons to continue to believe the same.

Ironically, this is what this faction believes about others, that they are “die-hards” and “pseudoscientific.” If someone calls them “pseudoskeptical” or “pathoskeptic,” they will block or arrange for the person to be blocked, but claims in the other direction are routine and tolerated. Enforcement is biased, creating a long-term pressure away from neutrality.

Wikipedia could be transformed, but what has been created is so highly entrenched that it might take a major event.

I’ve suggested that a new encyclopedia could be created that uses Wikipedia content, routinely, but that creates a filter and process for reviewing it. I’ve suggested that such a site might pay authors and editors, and that it might sell itself as “Wikipedia, but more reliable.” And it would solicit donations, but would also sell advertising, carefully vetted to be reliable, itself, which is quite doable. (The advertising would pay for the writing and editorial work.)

Sometimes, you get what you pay for. If you use volunteers, they work for their own purposes. It can be great, but large human organizations pay management, even when they use many volunteers.

Everipedia looks like an effort in that direction, but it utterly fails to attract me, so far, nor does it look like it could attract the kind of massive use and participation that could take it beyond Wikipedia. The Everipedia article on cold fusion is a fork of the Wikipedia article (so far, what I’d expect, but, then, if I read the article, does it invite me to improve it? If so, I don’t see how or where.)

To succeed, an improved project must present something clearly better than Wikipedia, such that users would have an incentive to look up a topic there rather than on Wikipedia. There are also complications, Google being a major supporter of Wikipedia. But a better product does not have to be better in every way, just in some, and it could flag what has been fact-checked and reviewed for neutrality, for example, and what was merely copied from Wikipedia. (Everipedia may do that, I can’t tell, but Everipedia seems to be focusing on selling access to businesses or people who want to control articles about themselves. Not on setting up an expert review process or other structure that would create reliability.)

It would use Wikipedia’s process to create a level of reliability, and then improve it. It would make comparisons with Wikipedia easy, as an example, so that changes to Wikipedia would be imported as (1) automatic if the fork article has not been validated, or as (2) reviewed, as with the contributions of any non-empowered editor on Wikipedia.

The focus appears to be on how to preserve one of the major weaknesses of Wikipedia, anonymity. That’s a double-edged sword. The new project, if linked to Wikipedia, would already have a way for anonymous editors to contribute: on Wikipedia! It could also allow suggested edits on its own versions.

(Wikipedia could also bring in content the other way, through a process that was used on wikipedia when a banned user created an article elsewhere, and then there was a Request for Comment on importing that (radical change) as a single edit. This is actually a far simpler question than the one-edit at a time process Wikipedia follows: “Is A or B better?” )

It would need to have layers of detail. It could have better editorial review tools than Wikipedia. An example of something missing from Wikipedia is an ability to search history, the entire history of the project or of an article, or of user contributions. Now, you can obtain logs, but they are not generally searchable, except primitively. I do it, but by downloading histories (the logs will not retrieve more than 5000 operations), merging them, and then using search in a text editor or in Excel, and that doesn’t give me the editorial text, only edit summaries.

It is possible to search project full-history XML, but it can be incredibly cumbersome.

Everipedia is not showing signs of being well-designed and implemented. The FAQ I find far too complicated. Wikipedia made it easy and quick for anyone to edit. While “anyone can edit” fell apart to some extent, becoming more like “anyone can waste time trying to improve the project,” that ease of use was crucial to Wikipedia’s initial success. Wikipedia failed not from that, but from failure to establish reliable review process, something that is normally crucial for serious publishers.

Another issue is that Wikipedia not only failed to reward expert attention, it actually became hostile to ordinary experts. Wikibooks and Wikiversity were much friendlier, but then I discovered something. Most experts were not terribly interested in sustained free contributions to books or educational resources, if there was no benefit for them other than simply being able to write. And if what was written was fragile, and easily hacked up by Randy from Boise, and if they have plenty of other places to publish, why should they contribute? Many people will do it occasionally just because people are mostly nice. But regularly and reliably? No.

(To assist someone who wanted to study the subject, I set up a Parapsychology resource on Wikiversity, and it actually attracted some notable scientists. But they did not regularly contribute, nor did they watch the pages. That project was deleted early this year when the skeptical faction extended its reach to Wikiversity. Long story. JzG was involved. They also deleted the Wikiversity resource on cold fusion, all based on the action of a single bureaucrat, not supported by the community. Efforts like that had always failed in the past. But the Wikiversity community that had always supported academic freedom and the inclusive neutrality of Wikiversity as distinct from the exclusive neutrality of Wikipedia (i.e., academic standards rather than encyclopedic) was, as usual, asleep. Eternal vigilance is the price of freedom.

I rescued those resources. Cold fusion. Parapsychology. Wikiversity showed how resources could be inclusively neutral. (A clearer example, where there would have been, on Wikipedia, or any other single-level wiki, edit warring, is Landmark Education.) Parapsychology was neutral, I’d been very careful to set it up that way. Cold fusion might not have been completely neutral, (I’d written most of it) but it would have taken about five minutes, with no harm being done, to rigorously neutralize it. The Wikiversity cold fusion article was often attacked on Wikipedia, but it was open for editing, and it had not been at all disruptive. Real neutrality is not disruptive, certainly not in itself. Real neutrality, with good-faith participants, can normally find complete consensus, even in the presence of major controversies. Wikipedia never understood this.

If I just want to shoot off my mouth, or to enjoy writing, I’ll start a blog, not start up an account on a wiki. It is far, far easier and, believe me, far more fun. And I can actually obtain funding for it. (Thanks!)

As an example, I know much of the cold fusion research community. Only very small number have ever attempted to edit Wikipedia. Met with entrenched hostility, for the most part, the handful who tried it simply gave up quickly. The field needs funding, and funding is not obtained by writing about cold fusion on Wikipedia. The inefficiency of Wikipedia makes it seriously wasteful.

Ignorance is bliss

There is at least one physicist arguing that LENR research is is unethical because (1) LENR does not exist, and (2) if it is possible, it would be far too dangerous to allow.

This came to my attention because of an article in IEEE Spectrum, Scientists in the U.S. and Japan Get Serious About Low-Energy Nuclear Reactions

I wrote a critique of that article, here.

Energy is important to humanity, to our survival. We are already using dangerous technologies, and the deadly endeavor is science itself, because knowledge is power, and if power is unrestrained, it is used to deadly effect. That problem is a human social problem, not specifically a scientific one, but one principle is clear to me, ignorance is not the solution. Trusting and maintaining the status quo is not the solution (nor is blowing it up, smashing it). Behind these critiques is ignorance. The idea that LENR is dangerous (more than the possibility of an experiment melting down, or a chemical explosion which already killed Andrew Riley, or researchers being poisoned by nickel nanopowder, which is dangerous stuff) is rooted in ignorance of what LENR is. Because it is “nuclear,” it is immediately associated with the fast reactions of fission, which can maintain high power density even when the material becomes a plasma.

LENR is more generally a part of the field of CMNS, Condensed Matter Nuclear Science. This is about nuclear phenomena in condensed matter, i.e., matter below plasma temperature, matter with bound electrons, not the raw nuclei of a hot plasma. I have seen no evidence of LENR under plasma conditions, not depending on the patterned structures of the solid state. That sets up an intrinsic limit to LENR power generation.

We do not have a solid understanding of the mechanisms of LENR. It was called “cold fusion,” popularly, but that immediately brings up an association with the known fusion reaction possible with the material used in the original work, d-d fusion. Until we know what is actually happening in the Fleischmann-Pons experiment (contrary to fundamentally ignorant claims, the anomalous heat reported by them  has been widely confirmed, this is not actually controversial any more among those familiar with the research), we cannot rule anything out entirely, but it is very, very unlikely that the FP Heat Effect is caused by d-d fusion, and this was obvious from the beginning, including to F&P.

It is d-d fusion which is so ridiculously impossible. So, then, are all “low energy nuclear reactions” impossible? Any sophisticated physicist would not fall for that sucker-bait question, but, in fact, many have and many still do. Here is a nice paradox: it is impossible to prove that an unknown reaction is impossible. So what does the impossibility claim boil down to?

“I have seen no evidence ….” and then, if the pseudoskeptic rants on, all asserted evidence is dismissed as wrong, deceptive, irrelevant, or worse (i.e, the data reported in peer-reviewed papers was fraudulent, deliberately faked, etc.)

There is a great deal of evidence, and when it is reviewed with any care, the possibility of LENR has always remained on the table. I could (and often do) make stronger claims than that. For example, I assert that the FP Heat Effect is caused by the conversion of deuterium to helium, and the evidence for that is strong enough to secure a conviction in a criminal trial, far beyond that necessary for a civil decision, though my lawyer friends always point out that we can never be sure until it happens. The common, run-of-the-mill pseudoskeptics never bother to actually look at all the evidence, merely whatever they select as confirming what they believe.

“Pseudoskepticism’ is belief disguised as skepticism, hence “pseudo.” Genuine skeptics will not forget to be skeptical of their own ideas. They will be precise in distinguishing between fact (which is fundamental to science) and interpretation (which is not reality, but an attempt at a map of reality).

This immediate affair has created many examples to look at. I will continue below, and comment on posts here is always welcome, and I keep it open indefinitely. A genuine study may take years to mature, consensus may take years to form. “Pages” do not yet have automatic open comment, editors here must explicitly enable it, and sometimes forget. Ask for opening of comment through a comment on any page that has it enabled. An editor will clean it up and, I assume, enable the comments. (That is, provide a link to the original page, and we can also move comments).

This conversation is important, the future of humanity is at stake. Continue reading “Ignorance is bliss”

Abd in the San Francisco Bay Area this week, for two weeks

I’m visiting my children and grandchildren for Thanksgiving, flying to San Francisco, November 14, scheduled to return to Massachusetts November 28. I will be meeting with researchers, as well. There’s a lot going on, a major shift in understanding developed around ICCF-21. It’s actually old stuff, but somehow remained obscure.

A new lab is starting up, run by a familiar face, but I’m not giving details until I have permission.

If you will be in the Bay Area, and would like to meet, contact me.

Meanwhile, I’ve prepared several transcripts from the ICCF-21 videos. Michael Staker’s presentation was a bombshell. It’s not the Fleischmann-Pons Heat Effect replication he did — though interesting, that has been done so, so many times — it is the metallurgy, the understanding of super-abundant vacancies, and, yes, that’s a thing: SAV.

This is not your grandfather’s metal hydride. We’ve gone beyond A and B and even C (gamma phase). This is getting interesting.

Staker’s video transcript, with abstract, slides, and time-links to the video.

Other video transcripts done:
Darden
McKubre
Tanzella
Storms

Lines to ICCF-21 videos, plus abstracts and slides, are linked from ICCF-21/videos.

Bridges into the unknown

I woke up this morning afire with ideas. Happens sometimes. Some of these I will be implementing, but the best ideas involve community, how to create and strengthen community, and, in particular, the LENR community, and especially the young, with life and career ahead of them. They are the future, I merely am a dreamer and observer. Well, I’ve done more than that.

Then I touched my computer and my screen lit up with the Windows “screensaver,” and it was the image above. That led me to the work of Zaha Hadid, who, somehow, had escaped being noticed by me before. What … an … amazing … woman! The world is larger than I imagine, and, in line with that:

The future does not exist yet. But it’s possible, and I declare that the future will be better than anything we can imagine.

Because we say so. Join me?

Continue reading “Bridges into the unknown”

ICCF-21 Slides and Video, Transcripts available

The organizers of ICCF-21 have released oral presentation slides and video. The page to access them is at https://www.iccf21.com/videos-oral-presentations

There are actually three pages, with a graphic display of links that vary with the page. The link above is to the video link graphic, there are two others:

The slide graphic, and the abstract graphic.

However, our video index page is searchable. and will be a single page with all links.  That is where links to transcripts and other related resources will be placed. It takes about an hour to create a presentation transcript in the format I am using, and about a day to clean it up and polish it.

I will be creating indexes to this material, to make it more accessible for search and study.  For the first time, Darden’s keynote is available. The video I’ve seen is high quality and far surpasses the poor audio we had for some presentations (which was still appreciated, people provided what they had.)

Because there is Close Caption working with the videos (at least what I saw), I will also be preparing transcripts.

UPDATE:Done. This is the video page here.

The first transcript I started with was of Tom Darden, but I happened to complete the Michael Staker transcript first.  I will now go back and present the Darden video in the same way. I will also integrate the slides and abstracts, so one will be able to read the transcripts and make sense out of the references to slides.

This process is highly enlightening. In the case of the Staker video, I had already worked extensively on SAV sources, so everything he was saying made sense (and I could more accurately decode the automated transcription text). I had already worked with a draft of Staker’s ICCF-21 paper and Mike McKubre’s presentation at Greccio, which was co-authored with Staker, collecting all the sources. So it’s now all quite clear to me, amazingly so, from being obscure and “hard to understand.”

How to capture a YouTube transcript (general and ICCF-21 specific).
  1. Go to the YouTube page. The ICCF-21 videos are all listed in a single YouTube channel.
  2. [Below the title is a menu button ( . . . ). Press it and select “Open Transcript.” A window will open with the closed caption transcript. Ctrl-A within that window to highlight it, and Ctrl-C to capture it in your clipboard.] The italicized description worked when I was writing this. I just tried it again, and instead of just selecting the text in the transcript window, it selected much else on the page. To capture just the transcript text I needed to put the cursor at the beginning, maybe select a little text at the beginning — left-mouse-hold at the beginning and then move a little — and then shift-left-click at the end after scrolling to the end. (ctrl-home places the cursor at the beginning of the transcript and ctrl-end places it at the end). Then ctrl-C will copy the selected text.
  3. [Paste this into a word processor or other editor. I found that if it is straight pasted (which includes formatting) into the WordPress visual editor, every line is a link to the video, with the brief transcript for the time shown as the next line.] Again, that’s what I was able to do earlier, and I was unable to reproduce this behavior. So the text doesn’t have the links, those will be introduced in Excel.
  4. At this point the text is useful. If I have this text for a video, I can then proceed to create the WordPress page. The further this is taken, the less work for me.
  5. I copy the youtunr transcript to Excel, to massage that copy into the format I want on the page. The URLs are translated to specific jumps to the specific times, by adding “&t=12m34s” to the URL. (that would be a timestamp for 12:34. My guess is that “h” is used for hours.) The time, from the next line, is moved to the text portion of the “a” tag, and the </a> tag closing is moved to just after the time, leaving the transcript text open, unformatted.
  6. This will give a transcript with the timestamps as links followed by a space and the text.. I then add in the HTML code to display the time in 6 point type, to make it less obtrusive but still readable. Replace {<a}  with {<span style=”font-size: 6pt;”><a} (don’t copy the curly braces!) and {</a>} with {</a></span>}. 4 point can be used for this, it is sort-of readable. However, it’s useful to have it be more readable when editing the transcript.
  7. To speed up editing of this into continuous text, paragraphed, I replace all the LF/CR codes (represented in Word search and replace as “^p”) with spaces, so it becomes one huge “paragraph.” Then, editing the transcript, I paragraph it, simply by adding punctuation and a return (“Enter↵”).
  8. The HTML code is then copied back to my WordPress editor.
  9. I clean up the transcript in WordPress. At any time, I can follow a timestamp link to find the exact point in the video. If I press the link just before some text, there it is, quickly. However, because it takes some time for my computer to load the video, when editing, I have WordPress open in one window, and the YouTube video in another, so I can immediately press the stop/run button in the video, and so if I want to adjust the time, usually to go back, I use the YouTube slider and I know what time to go to, approximately, by the displayed link in WordPress.
  10. Once the text is paragraphed, I can add (in word) spacer code, to reduce the space. I’m using ten pixels instead of the default space (which I think is 20 pixels.) I’m using a WordPress shortcode from the Spacer plug-in for that. It’s a little tricky.
  11. The ICCF-21 has the slides available, and the presentations can make much more sense with the slides! I downloaded the slide PDF, renamed it with a simpler but still unique name, and used ILovePDF to convert this to individual JPEG images, Powershell to change the filenames to simple followed by the page number, and then I uploaded the files to the blog domain in a slides directory, uploads/slides, then I used MediatoFTP to register these as images. I used to manually upload all the images within WordPress, which puts them into dated media directories with much longer names. This gives me immediate access from the editor to the slides, searchable by slide number, and the Media facility remembers the last search, so I can just bump the number of to insert the next slide.
  12. So I watch the video again, inserting the slides. The normal place is in the time sequence when the speaker clicks to the next slide. For clarity, I vary this. Some speakers use many slides where another will use one, the many slides each adding something to the display.
  13. I add the slide numbers in Excel when I’m done. It’s too much work to add them when placing the image, and I found that if the slide number is put as a caption, it’s weirdly place. It was much easier to place the slide number as small text just before the image.
  14. You can see the results on two pages at this point: Staker and Storms.
  15. Comments are invited.
  16. Participation is invited.

I cannot imagine a better way to develop deep understanding of CMNS than work like this. To do this work well requires deep attention to detail. If you are unfamiliar with terms, you will become familiar, or you will make mistakes in editing the transcript.

I have the brain of a 74-year old.  They must have made some mistake!

It takes more repetition to learn than when I was younger, but I can still learn and the results are little short of amazing, certainly for me!

As to those mistakes, we hope, someone will find and correct them, and we will learn if we pay attention. Making mistakes is generally the fastest way to learn, and any error in these transcripts can be quickly fixed. I am considering putting them on the wiki, which would stand as a working draft.

I see that the following is somewhat redundant to what is above, but, hey, it’s only a paragraph. . . . The Staker and Storms videos are particularly significant now, considering discussions in the community about Super Abundant Vacancies. From working with sources, a presentation in Greccio this year and those two videos, I have enough familiarity with the findings that, to my great surprise, at least one major expert has deferred to my opinion. But I’m certainly not a full expert, just an opinionated reporter who loves to inform my readers as to what exists in sources, so that they can come to their own conclusions. I will report my opinions, sometimes, but they matter much less. Increasingly, they are informed.

The related fields are complex and can take advanced study and training, but, by continual exposure to the material, I become familiar with it.

I learned years ago to notice and drop the “this is too complicated” reaction that creates an obstacle to familiarity.

Our strong tendency is to remember what generates feelings, particularly feelings of dislike, rather than what is actually happening.

I actually don’t “try” to understand, I just keep looking, more or less like a child. Maybe I look something up if it seems interesting.

If I write, I check sources, over and over, I don’t just rely on memory, usually.

Since I have the sources, I cite them. All this can make my writing long. I write polemic in a different way.

I learned electronics and made it into a successful profession, when I was about 30, by having a basic background (but from many years before, obsolete, hey vacuum tube radios!), and then just looking at electronics magazines, and having a work opportunity allowing me to focus and learn some specifics. I did not “study” it.

I learned Arabic by reading the Qur’an in Arabic. (That simply requires learning the symbols, Qur’anic orthography is phonetic. Understanding Arabic came much later, after familiarity was developed. That’s a theme: familiarity.) Again, I did not learn by studying it. The fastest increase in comprehension actually came when I memorized a large chunk of the Qur’an. Before then, when I tried to study Arabic with grammars, etc.., it went in one eye and out the other. (Hah!) Arabic is famously difficult for non-Semitic language natives. But children learn it just as easily as other languages. Familiarity. Once I was familiar with the patterns of the language, the grammars then made far more sense. Otherwise they seemed like a pile of arbitrary rules to memorize.

Alternate channel

Some internet fora pretend to represent a community, and, sometimes, to some extent, they do. But it is common that the collection of users that would consider itself the community has no real power except to make a fuss (and maybe get banned) or walk away.

The Wikipedia community is a great example. There is a real community, but there is also a corporation which, for years, hid behind the trope that the community was in charge. Several years ago, they appear to have abandoned that, and the problems show up in quite a few ways.

Bottom line, the WikiMedia Foundation can and does, on its own, globally ban users, with no explanation and using a crude tool that disables account access and incoming email, cutting the user off. They announce to the world that the person is banned (without explanation but generally implying that the Terms of Service have been violated, which is sometimes false). In fact, the community is banned from communicating with the user! At least using the open email access that is normal through the MediaWiki interface. (Some time back it was discovered that a globally locked user could receive mail if they had email enabled, and so the Foundation quietly fixed that.)

And they do this arbitrarily, with no notice to the user, no warning, and they claim, no appeal possible. They ignore requests for review or to correct errors. It’s a lifetime ban of the person, not the account, and one person was banned with no account, banned by his real name.

Lenr-forum also bans users. For most bans, there is a fairly obvious reason, but occasionally, it’s personal and arbitrary and lenr-forum administration is opaque. But they cannot stop people from reading the site and commenting, and I’m not talking about creating sock puppets. Some time ago, I started occasionally commenting on lenr-forum, using hypothes.is. This tool was designed for academic use, largely. Comment on any web site, and share the comments with a group or with the world. I highly recommend it for the possibilities. I have the tool installed in my browser, so I can add a comment anywhere, with no fuss or special log-in, and I can make it private or publish it.

So, some links:

All comments on lenr-forum.com (by anyone using hypothes.is)

All my comments on lenr-forum

(at this point, both links return the same 116 comments. They are returned in reverse date order, so, as you can see, I made 7 comments recently.)

All my comments anywhere.

I just added new comments on a Shanahan post.

My ideal is better than your reality

Much criticism is based on this comparison between real-world expression and the critic’s ideas, which, of course, may be revised, ad hoc.

This extends far outside science. Our ideas of perfect morality may be, for example, compared with the real behavior of (some) formal members of a religion, as if this demonstrates the superiority of our religion (or our ideals) over the other.

Because there was only one major and relatively deep critique of the Fleischmann-Pons calorimetry, published in a mainstream journal, one debate where there was original publication, critique (by D.R.O. Morrison), and author response, last year I began a page hierarchy to study the debate. The original as-published documents are behind a pay-wall, so I used copies from lenr-canr.org, that were based on a copy of the Morrison critique from sci.physics.fusion, an internet newsgroup, an obsolete form similar to a mailing list.

I first observed the issue of paper integrity in that the FP paper was not identical to the lenr-canr.org copy, which is likely a copy supplied to that library by an author. That is routine for lenr-canr copies of journal-published papers, for copyright reasons. The changes seemed quite minor (I will check this again more thoroughly). But for no decent reason, I did not check the Morrison critique against the later as-published version, and because that as-published version is not widely available, I preferred to use a version that anyone could check against my copy.

And that was an error. I was then distracted by other business, and as continued participation in the review did not appear, I did not return to my study of the debate until yesterday. I started by completing the adding of URLs for references, and then began going over the Morrison paper. It was full of errors or non sequiturs, immature argument, etc. And I started to wonder how this had gotten past peer review. Journals do not necessarily review critiques as strongly as original papers, and I have seen blatant errors in such critiques. Ordinarily, it is left to the authors to correct such errors. In one case where a blatant error was left standing (the Shanahan review in the Journal of Environmental Monitoring), the error was so ridiculously bad that the authors and others responding completely missed it, instead focusing on Shanahan’s conclusion from his seriously defective analysis. Argument from conclusion, naughty, naughty!)

The Morrison document from the newsgroup had this at the top:
5th DRAFT – Scientific Comments Welcomed.

There were no serious responses to that post, threaded with it. (There were other responses that can be found with some searching, made more complicated by some very poor Google archiving practices, what they did when they took over the newsgroups. I will cover other responses (some of it is interesting) elsewhere.

What Morrison was doing was, in part, to be commended, he was putting his work out there for critique before final submission. However, by this time, the scientific community had become highly polarized, and serious discussion, what might be called collaborative critique, good scientific process, was often missing. It still is, too often. Morrison’s critique would be useful, even if “wrong” in this way or that, because what Morrison wrote would be what many would think, but not necessarily write.

I came back to this issue because I noticed a mention of my study on lenr-forum.com. The remainder of this post is a detailed response to that. Continue reading “My ideal is better than your reality”

Right and wrong at the same time

may be subject to copyright

The cold fusion horizon

Is cold fusion truly impossible, or is it just that no respectable scientist can risk their reputation working on it? — Huw Price

I’ve been reading about Synthestech, blogged about it, and now Deneum, more of the SOS, but a step up in professional hype.

Steve Krivit was right about Rossi, he was — and remains — , ah, how shall I express it? The technical phrase is “liar, liar, pants on fire.” But Krivit’s evidence was weak on the subject, mostly raising obvious suspicions, and Tom Darden and  his friends knew that they needed much better evidence, which they proceeded to obtain.

They found quite enough to conclude that if Rossi had anything, it was so certainly useless and so buried in piles of deceptions and misleading information that they simply walked away, it wasn’t worth the cost of completing the trial in Rossi v. Darden in order to keep the rights, which they could rather easily have done.

Krivit was “right,” certainly in a way, but his claims were obvious, in fact. He was right to report what he found, but it was misleading, and useless, to label everything with approbation and contempt, the habits of yellow journalism.

It is not clear that Industrial Heat could have avoided the cost of their expedition. What I find remarkable is how few have learned anything from the affair, and some of those who clearly have learned, have learned how to better extract money from a shallow, knee-jerk public.

The post today is inspired by a photo I found on the Deneum twitter feed. I will be writing about Deneum, there is a real scientist behind Deneum, but is there real science as well? That’s unclear, but what is very clear is the level of hype, that Deneum is representing itself in ways that will lead a casual reader to imagine they already have a product and merely need to start manufacturing it. So $100 million, please. Here is where to send it.

It’s a rich topic for commentary, but today, I’m following some breadcrumbs found, a blogger who was right and wrong, in a different way, more or less from the other side. The photo above, and the headline is from a post by Huw Price, 21 December, 2015

That date is important. At that point, Thomas Darden had been interviewed at ICCF-19, and had made some positive noises. By that time, Darden knew that something was very off about Rossi, and some — or all — of his positivity may have been about technology other than Rossi’s. At the time, I noticed how vague it was. In early 2016, Rossi claimed to have completed the “Guaranteed Performance Test” and was billing Industrial Heat for $89 million. And it was all a scam, a tissue of lies and deceptions. So, now, because of the lawsuit Rossi filed,  we know, to a reasonable degree of certainty, how the Rossi affair worked and did not work. How does Dr. Price’s essay look in hindsight, and has he ever commented?

I’m using hypothesis.is to comment on that essay, because I don’t want to pay $500 to syndicate it, though it is an excellent essay, in the general principles brought out. I may also, later, copy some excerpts here.

The annotations

. (To see them, one must install a tool from hypothes.is, which I highly recommend. Hypothes.is is not intrusive. To start.)

Having written that, I now find that Huw Price also blogged this himself, as

My Dinner with Andrea. Cute title.

A few months later, Huw Price wrote another essay for Aeon:

Is the cold fusion egg about to hatch?

His speculations were off. Has he followed up?

I’ve been unable to find anything, so far. Will the real Huw Price please stand up?

 

 

 

 

Impressive, eh? How could that be a scam?

But it was. So how was

Synthestech scam?

It’s come to my attention that there is a company, Synthestech, which has, for about a year, been running an Initial Coin Offering, as an investment in “Cold Transmutation of Chemical Elements.”

Low Energy Nuclear Reactions, which Sythestech is promoting, are real, or at least there are reports by competent and reputable scientists that there are such reactions. However, the state of the art is far, far from any commercial potential, and there have been many scammers in the history of LENR. Reading the Synthestech material, I see no sign that they have a clue how to make this work, reproducibly and practically. There have been many, many researchers working on the problems for many years, and hundreds of millions of dollars have been invested, with little practical result. If this does show up, it is unlikely to be through an activity using very shaky fundraising techniques.

If one wants to invest in LENR, which must be considered extremely high risk at this time, –expect to lose your money  I would suggest Industrial Heat, which does not accept most private investment at this time. At least, though, they are supporting genuine research and it is possible they will get lucky. For the general public, Woodford Patient Capital Trust is invested in Industrial Heat, so it’s possible to buy in, I know a few people who have modest stakes — and a few with much larger stakes. This is, however, more of a way to spend one’s money than to get rich. There was a revaluation lately that looked good. It may or may not mean anything.

Again, I’ll emphasize, this is truly high risk, I am aware of no technology close to commercialization. Andrea Rossi was (and remains) a fraud.

Speaking of Rossi, Sythestech uses his name. In their “White Paper,” they have:

Andrea Rossi was one of
the first entrepreneurs who adopted the LENR technology. In collaboration with Sergio Focardi, he created a device based on the principles of LENR-reactions, which generated electricity. In recent years, many installations that generate electricity have been built secretly.

That’s total BS. Rossi has not claimed the generation of elecricity. He did claim to be operating a megawatt reactor in Florida, and it was secret for a time, but all this blew up in 2016, becoming highly public in the lawsuit, Rossi v. Darden. There was a plant, but it was not generating a megawatt, if it was generating anything, and the odds are high that it was generating nothing, it was just a big electric water heater, maybe 30 KW.

Rossi comes up again in the interview in Entrepreneur

Your whitepaper ICO mentions modern nuclear technology. Do you also develop advanced nuclear technologies? Could you tell us more about this?

In fact, the field has become more popular than ever. Latest advancements in portable power generation devices developed by Andrea Rossi and progress in obtaining platinum from tungsten by Mitsubishi Heavy Industries, indicate that Cold Transmutation has gained real-world traction.

There are no “portable power generation devices developed by Andrea Rossi.” There has been work on certain transmutations by Mitsubishi Heavy Industries (the work of Iwamura), but it was not “platinum from tungsten” and was not even close to commercial possibility. Synthestech is doing a lot of name-dropping, making it seem like there is support for their plans. There is not, not from the scientists in the field, not as far as has been shown.

There are so many signs of scam, frenzied hype, that I’m not researching this further, there are many more interesting things to work on, with the real science of LENR. I’m putting this up to warn investors that, while LENR is real, that is, there are real nuclear effects at apparently low initiation energies, the evidence has become overwhelming, the effects remain very difficult to control, they are “unreliable,” generally, in spite of many years of effort to develop control. The best minds in the field are searching for a “lab rat,” a simple experiment that could be widely confirmed. It does not yet exist.

(The evidence for the reality of LENR does not depend on reliability of generating the effect. Rather, the circumstantial evidence is the many reports of anomalous heat, the many reports of anomalous tritium, and then the direct evidence that measured helium is correlated with the heat, at a ratio consistent within experimental error of that expected from fusion. (This does not require that the reaction be “d-d fusion.” Any process that starts with deuterium and ends with helium will show that ratio, it must, if there are no leakages.)

David Gerard, not exactly a friend, has a post on Synthestech. He has his head wedged in a dark place on LENR, but he’s right that Synthestech is a scam. It has many, many marks of deception. However:

Karabanov announced his breakthrough in a press release and press conference in August 2016 — because science by press conference, rather than a published paper detailing an experiment and how to reproduce it, is standard in cold fusion:

It is not “standard in cold fusion.” There were press conferences in 1989, on both sides of the cold fusion controversy, but the real science is not conducted by press conference. There are over 1500 papers on cold fusion published in mainstream journals and if we add in conference proceedings, which sometimes include papers of equal or better quality than what is in journals, it’s roughly 5000 papers. David Gerard is repeating a series of tired old arguments against cold fusion. He has no clue what really happened in 1989-1990 and later, just a pile of vague ideas, second-hand knowledge, not actually researched, repeating the common opinions of the ignorant as if fact.

The problem is not that “cold nuclear transmutation” is impossible, it’s not, but that it is, so far, at best, a laboratory curiosity, not a commercial possibility, except in the most remote sense.Maybe. Some day. If.

Dismissals like that of David Gerard are obviously pseudoskeptical and will have no effect or influence on those who might be interested in investing. Steve Krivit was correct that Rossi was a scammer, but because his evidence was circumstantial and vague, dependent on ad-hominem arguments and inferences, it did not prevent investment in Rossi.

There are many Russian researchers working with LENR, they have long been prominent in the field. I see no sign, so far, that Synthestech is working with the real scientists in the field, though they drop their names, such as Vysotskii and Kornilova. I found that apparently Yuri Bazhutov, the late well-known Russian LENR researcher, has been called an “advisor” to Synthestech. See this obituary.

That points to a Sythestech interview of Bazhutov. I had noticed that Sythestech has claimed to have been an observer at RCCNT&BL in 2017, and the interview was allegedly conducted there. There is only one very brief mention of Synthestech in the interview:

What can you say about “Synthestech” and your visit to the Sochi laboratory?

We were pleased to know that there is a new group in Russia that is studying the same phenomena. It’s very pleasant that there is such a team as “Synthestech”, because the winner is the one who moves.

That is simply a casual comment, non-committal, and not surprising. This is far from an endorsement of the actual company, or its accomplishments. Many entrepreneurs have induced scientists to be called “advisors.” It’s basically meaningless, particularly when the company is unknown and the scientist has little reason to suspect a scam. I have seen scientists, later, distance themselves from such companies, when the way they were operating became clear.

Again, if one wants to support LENR research, I recommend becoming knowledgeable as a first step. There are many ways to support increased awareness of the real work that has been done. Tossing money at overheated investment scams is not one of them. Contact me if interested in supportive activity.

On more point: the original research that Karabanov of Synthestech appropriate was biological transmutation. To those that believe cold fusion or cold nuclear transmutation is impossible, biological transmutation will seem preposterous.

However, there are nuclear effects in condensed matter, that appear to involve unusual structures that allow a collective effect, rather than the brute-force collision effect of hot fusion. This is all poorly understood, but the evidence of nuclear anomalies is overwhelming, and if it can happen in the lab, at low energies, it is easily conceivable that life would find a way to use it, and there is substantial work on biological transmutation, by serious and highly experienced scientists (such as Vysotskii, whose name gets dropped by Karabanov). Most of this is not yet confirmed.

Karabanov is attempting to sell something that might be possible, almost certainly before its time. Here is a page covering some of that research by those identified as Karabanov’s partners. It looks like Karabanov abandoned the biological approach, and he claims to have industrial processes. No evidence has appeared of this. When challenged with, “If you can transmute elements, why do you need the bitcoin investments?” (he could just make precious metals), his answer is that the experiments only produce milligrams of material. I think he is exaggerating even there, if not outright lying, but what is a few orders of magnitude among friends?

Looking for “boring,” finding gold

I’ve been spending most of my days, lately, compiling bibliographic material, and setting up archives of LENR conference papers, as well as a full LENR Library. Where I can find an on-line copy of the Proceedings, it’s easy, merely a bit time-consuming. In other cases proceedings may only exist in a few libraries, and it may take time to find those copies. Sometimes scans are made of books, but the cheap way of doing this, at $0.01 – $0.02 per page, involves destroying the book. These volumes, where they exist, may sell for on the order of $300. It is not necessary to destroy the book to read it, and if it can be read, it can be photographed, and that is now easy with smart phones. My 64 GB iPhone could hold high-resolution photos of every page of a 1000-page book, without breaking a sweat. I might get a little tired, I figure I could, with a simple setup, maybe 2 pages per minute. So 500 minutes for a 1000 page book, 8 hours. To avoid RSI, not less than two days. Doable. I will only do this if necessary, and will attempt to share the work.

All needed, perhaps, because nobody bothered to keep and make available original copies of computer files. Material is still being lost. As an example, abstracts and proceedings have recently disappeared from iscmns.org. Documents once hosted by newenergytimes.com have vanished. Sometimes these can be found on the internet archive, sometimes not.

Below, I report benefits of working with this material. Continue reading “Looking for “boring,” finding gold”

Being right is not enough

or How “fusion” created confusion.

We now have strong evidence that the Fleischmann-Pons Heat Effect, sometimes known as the Anomalous Heat Effect, is nuclear in nature and accomplishes the transmutation of deuterium into helium, as the main reaction generating heat, but this evidence was not available in the early days of the field. Skeptics and “believers” conspired (albeit not realizing what they were doing) to call what was actually observed — or claimed, and the two were heavily confused — by Pons and Fleischmann, “cold fusion.” Even when a little careful thought would have exposed the distinction.\

What Pons and Fleischmann observed, in experiments with extreme loading of palladium with deuterium, was anomalous heat, with an apparent energy density or net energy production higher than they could explain with chemistry. They also saw weak signals associated with fusion, specifically, they believed they had seen evidence of neutrons, they detected tritium, and also helium. They did not have quantitative correlations, and  the quantities found of tritum and neutrons and the ratio of heat to tritium and neutrons, and tritium to neutrons, was far different from that expected if they had succeeded in creating normal fusion.

So what they had found, if it was nuclear in nature, was not “d-d fusion,” almost certainly, which is very well known, and which is believed to necessarily produce those products.

I just came across some remarkable language from 1990 that shows the issue. This is in a report to ICCF-1, by Iyangar and Srinivasan, from BARC, the Bhabha Atomic Research Centre, Bombay, India. These were nuclear experts, and there was, for a time, a massive effort to investigate cold fusion.

Wait, to investigate “cold fusion”? What’s that? Getting little details like exactly what one is investigating and why can be, ah, let’s call it useful.

From the abstract, and, remember, I have the benefit of an intervening three decades of history, a huge dollop of hindsight. What I’m seeing here as a misunderstanding that fostered confusion and conflict was something that many, many thought, it was language in common use. From the abstract:

A wide variety of experiments have been carried out by twelve independent teams employing both electrolytic and gas phase loading of deuterium in Pd and Ti metals to investigate the phenomenon of cold fusion first reported by Fleischmann and Pons in March 1989. The experiments were primarily devoted to the study of the emission of nuclear particles such as neutrons and tritium with a view to verify the“nuclear origin”of cold fusion.

Did Fleischmann and Pons report “cold fusion”? It was quite unfortunate that they mentioned the classical fusion reactions in their first paper, because it was totally obvious that what they were seeing, whatever it was, was not those reactions. The evidence that a nuclear reaction was happening was circumstantial, not enough to overcome strong expectation that such reactions would be impossible in the conditions of their experiments

That is, there was heat that they could not explain. If the heat were regular and predictable and reproducible, that could have been enough. But it wasn’t. The heat effect was elusive. “I can’t explain these results with chemistry” is not evidence with which one could convince a physicist. One would first need to convince the physicist that the evidence is clear and not artifact, because if one has telegraphed that you think this is something the physicist will think is impossible, they will examine all the evidence with a jaundiced eye. It’s just human nature.

So “cold fusion” started off with a handicap. It really didn’t help that the neutron evidence that Pons and Fleischmann adduced was artifact. What we know now is that very few neutrons, if any, are generated with their experiment.

(We need to realize that many difference kinds of experiments get lumped together as “cold fusion,” but different experiments may actually show different results, different reactions might be happening under conditions that are sometimes not adequately controlled. By conceptualizing the object of study as “cold fusion,” an assumption is created of a single phenomenon, and then when results differ, the reality of the alleged phenomenon comes into question.l)

What was reasonably being investigated was the possibility of nuclear phenomena in certain metals loaded with deuterium. The first issue to investigate was, for most groups, heat. But groups with a particular interest in nuclear physics often investigated neutrons, and when it was found that many replication attempts produced very few neutrons, this strengthened skepticism. There was also a common assumption that if nuclear reactions were happening, there must be neutrons. That is simply false, but the absence of neutrons from what was being assumed to be deuterium-deuterium fusion, that’s actually a very dificult puzzle.

The first order of business was to detect, measure, and correlate phenomena, not to interpret the results, but this was all pre-interpreted. They were investigating “cold fusion.” Not, say, “the Fleischman and Pons reports of anomalous heat.”

Ask a physicist, could there be deuterium fusion in palladium deuteride at room temperature, and he or she is likely to tell you, straight out, “No.” But ask this scientist if there could be a heat effect of unknown origin, and if they are worth their salt, they would tell you, well, we don’t know everything and sometimes it can take time to figure out what is happening.

Tbe report desperately needing confirmation was what Pons and Fleischmann had actually observed, once the confusion over their neutron reports was cleared up. “Cold fusion” was an interpretation, not an experimental fact, or certainly not yet.

Tritium was widely observed, it wasn’t just BARC. But was the tritium connected with the prime Fleischmann=Pons effect, the heat? And then things really got crazy when reports started to show up of a heat effect with light hydrogen. Again, the concept of a single phenomenon caused confusion. It is not that we know there is more than one reaction, we don’t know that yet. But it is quite possible, the “law of conservation of miracles” is not a law, and cold fusion is not a miracle. It’s something that doesn’t happen very often, and while I use the tern “cold fusion,” often, I would not use it academically without clear definition. At least I hope not!

By “cold fusion” i mean the FP Heat Effect and other possible affects commonly associated with it or believed or claimed to be related. I justify the use of the term because the known product from the FP Heat Effect is helium, which is, Ockham’s Razor with the evidence we have, coming from the conversion oi deuterium to helium. That is fusion in effect, which must be distinguished from “deuterium fusion,” i.e., two deuterium nuclei fusing. Why? That reaction is very well known and the products are well known, and there are reasons to consider that even if this happens somehow at low energy, the products will be the same.

(When a physicist claims that “cold fusion” is impossible, because of the Coulomb barrier making the fusion rate be so low as to be indetectable, they are being sloppy, because muon-catalyzed fusion takes place at extremely low temperatures. Muons act as catalysts, so the immediate question arises, could something else catalyze fusion. An inability to imagine it is, again, not evidence. The universe is vast and possibilities endless, we cannot know all of them, only what is common.)

In 22 different electrolytic experiments whose cathode surface areas ranged from 0.1 to 300 cm2 , large bursts of neutrons and/or tritium were measured. Some of these gave clear evidence that these two nuclear particles were being generated simultaneously. The neutron-to-tritium yield ratios in the majority of these experiments was in the range of 10-6 to 10-9.

“Large bursts” is suspicious. Large compared to what? I have not read the report in detail yet. (I will). But tritium is a minor effect associated with the FP Heat Effect. It may be the case that tritium is enhanced if there is substantial light hydrogen in the heavy water, but even a little light water tends to suppress the FP Heat Effect. Even if there is some single mechanism, it behaves differently when presented with different fuels. The norm with cold fusion experiments, though, is that high-energy radiation and radioactive products are found only at very low levels. The rule of thumb, I state as tritium being a million times down from helium, and neutrons a million times down from helium. Helium production, with deuterium fuel (helium is not reported with light hydrogen as fuel, and we don’t know the product of light hydrogen “cold fusion.”

Those ratios are strong evidence that “cold fusion” is not d-d fusion, because the operation of d-d fusion, how and why the nucleus normally fragments, is well understood. I.e, the fused nucleus, the product of that fusion, is highly energized, it’s hot. That is true even if the reaction is not hot fusion (and the kinetic energy involved with fusion from the velocity of impact is dwarfed by the energy of collapse, as the nucleons collapse under the influence of the strong force. (Very strong force!)  There is so much energy that normally the nucleus breaks into two pieces and there are only two ways it can do that. It can eject a proton or it can eject a neutron, to carry away that energy and leave the nucleus in the ground state, cool. That’s the two branches, and it is mostly equal which nucleon ends up being odd man out. Hence the two common branches,

1H2 (deuterium)+ 1H2 -> 1H3 (Helium-3)+ 1H(light hydrogen, a proton) + energy

1H2 + 1H2 -> 2He3 (Helium-4) + 0N 1 (a neutron) + energy

And then the third branch is very rare. If the nucleus happens to be exactly balanced (I think, maybe balance is not an issue, just the odds), and manages to live intact long enough to generate a photon, the nucleons can stay together and almost all the energy is dumped into the photon, which is very high energy, 23.8 MeV. (The rest of the energy is in the recoil of the helium nucleus.) I think the branching ratio for that is one in 10^-7 reactions. One in ten million.

So that becomes another miracle that exercised Huizenga. If somehow the fusion happens (spectacularly unlikely!), and somehow it manages to produce helium (very unlikely), there must be a gamma ray, a very energetic one. This would be, at the heat levels reported, very dangerous. It’s not observed. That’s strong evidence that d+d fusion is no happening.

Something else is happening. In that context and with that understanding, and given the mishegas about “cold fusion” it was important to be investigating phenomena, not explanations. Tritium was actually contradictory to the FP Heat Effect, in general. It was lumped together with it because if tritium was being produced, “something nuclear” was happening. But what is the evidence that the heat was nuclear. Maybe if we look carefully, we will see nuclear reactions happening at low levels in unexpected places.

A unique feature of the BARC electrolysis results is that the first bursts of neutrons and tritium occurred (in 8 out of 11 cells) on the very first day of commencement of electrolysis, when hardly a few amp-hrs of charge had been passed.

This is evidence that the effects they are seeing are not the FP Heat Effect! It doesn’t happen that early, in FP type electrolysis experiments. There are rapid effects reported with codeposition, a different approach.

But the occasion for this post was the linguistic anomaly here. I’ll repeat it:

The experiments were primarily devoted to the study of the emission of nuclear particles such as neutrons and tritium with a view to verify the“nuclear origin”of cold fusion.

“Fusion” is a nuclear reaction. So they are looking to verify the nuclear origin of a nuclear reaction. It’s a tautology. As to looking for nuclear particles associated with what was called “cold fusion,” the FP Heat Effect, they are missing, mostly. What BARC found was at very low levels. Helium was suspected early on, but (because of no gammas) was not given a great deal of credence, and there was an additional reason to doubt helium evidence: helium is present in the atmosphere at levels normally greater than those expected if the FP Heat Effect were producing helium. So in many experiments (not all), leakage can be a possible artifact. It took careful work (beginning with Miles as to what I know so far) to actually show that helium is the main product of the FP Heat Effect.

That has been done, and confirmed many times. Tritium, however, is interesting, scientifically, and there is much work still to be done with tritium, and in particular, investigating tritium correlations with other products and conditions.

 

Consensus is what we say it is

But who are “we”?

HM CollinsA BartlettLI Reyes-Galindo,  The Ecology of Fringe Science and its Bearing on Policy, arXiv:1606.05786v1 [physics.soc-ph],  Sat, 18 Jun 2016.

 In this paper we illustrate the tension between mainstream ‘normal’, ‘unorthodox’ and ‘fringe’ science that is the focus of two ongoing projects that are analysing the full ecology of physics knowledge. The first project concentrates on empirically understanding the notion of consensus in physics by investigating the policing of boundaries that is carried out at the arXiv preprint server, a fundamental element of the contemporary physics publishing landscape. The second project looks at physics outside the mainstream and focuses on the set of organisations and publishing outlets that have mushroomed outside of mainstream physics to cover the needs of ‘alternative’, ‘independent’ and ‘unorthodox’ scientists. Consolidating both projects into the different images of science that characterise the mainstream (based on consensus) and the fringe (based on dissent), we draw out an explanation of why today’s social scientists ought to make the case that, for policy-making purposes, the mainstream’s consensus should be our main source of technical knowledge.

I immediately notice a series of assumptions: that the authors  know what “consensus in physics” is, or “the mainstream (based on consensus)”, and that this, whatever it is, should be our main source of “technical knowledge.” Who is it that is asking the question, to whom does “our” refer in the last sentence?

Legally, the proposed argument is bullshit. Courts, very interested in knowledge, fact and clear interpretation, do not determine what the “mainstream consensus” is on a topic, nor do review bodies, such as, with our special interest, the U.S. Department of Energy in its 1989 and 2004 reviews. Rather, they seek expert opinion, and, at best, in a process where testimony and evidence are gathered.

Expert opinion would mean the opinions of those with the training, experience, and knowledge adequate to understand a subject, and who have actually investigated the subject themselves, or who are familiar with the primary reports of those who have investigated. Those who rely on secondary and tertiary reports, even from academic sources, would not be “expert” in this meaning. Those who rely on news media  would simply be bystanders, with varying levels of understanding, and quite vulnerable to information cascades, the same as everyone with anything where personal familiarity is absent. The general opinions of people are not admissible as evidence in court, nor are they of much relevance in science.

But sociologists study human society. Where these students of the sociology of science wander astray is in creating a policy recommendation — vague though it is — without thoroughly exploring the foundations of the topic.

Are those terms defined in the paper?

Consensus is often used very loosely and sloppily. Most useful, I think, is the meaning of “the widespread agreement of experts,” and the general opinion of a general body is better described by “common opinion.” The paper is talking about “knowledge,” and especially “scientific knowledge,” which is a body of interpretation created through the “scientific method,” and which is distinct from the opinions of scientists, and in particular the opinions of those who have not studied the subject.

1ageneral agreement UNANIMITY

the consensus of their opinion, based on reports … from the border—John Hersey

bthe judgment arrived at by most of those concerned

the consensus was to go ahead

2group solidarity in sentiment and belief

Certainly, the paper is not talking about unanimity, indeed, the whole thrust of it is to define fringe as “minority,” So the second definition applies, but is it of “those concerned”? By the conditions of the usage, “most scientists” are not “concerned” with the fringe, they generally ignore it. But “consensus” is improperly used, when the meaning is mere majority.

And when we are talking about a “scientific consensus,” to make any sense, we must be talking about the consensus of experts, not the relatively ignorant. Yet the majority of humans like to be right and to think that their opinions are the gold standard of truth. And scientists are human.

The paper is attempting to create a policy definition of science, without considering the process of science, how “knowledge” is obtained. It is, more or less, assuming the infallibility of the majority, at some level of agreement, outside the processes of science. 

We know from many examples the danger of this. The example of Semmelweiss is often adduced. Semmelweiss’s research and his conclusions contradicted the common opinion of physicians who delivered babies. He studied the problem of “childbed fever” with epidemological techniques, and came to the conclusion that the primary cause of the greatly increased mortality among those attended by physicians over those attended by midwives, was the practice of doctors who performed autopsies (a common “scientific” practice of those days) and who left the autopsy and examined women invasively, without thorough antisepsis. Semmelweiss studied hospital records, and then introduced antiseptic practices, and saw a great decrease in mortality.

But Semmelweiss was, one of his biographers thinks, becoming demented, showing signs of “Alzheimer’s presenile dementia,” and Semmelweiss became erratic and oppositional (one of the characteristics of some fringe advocates, as the authors of our paper point out). He was ineffective in communicating his findings, but it is also true that he met with very strong opposition that was not based in science, but in the assumption of physicians that what Semmelweiss was proposing was impossible.

This was before germ theory was developed and tested by Pasteur. The error of the “mainstream” was in not paying attention to the evidence Semmelweiss found. If they had done so, it’s likely that many thousands of unnecessary deaths would have been avoided.

I ran into something a little bit analogous in my personal history. I delivered my own children, after our experience with the first, relying on an old obstetrics textbook (DeLee, 1933) and the encouragement of an obstetrician. Later, because my wife and I had experience, we created a midwifery organization, trained midwives, and got them licensed by the state, a long story. The point here is that some obstetricians were horrified, believing that what we were doing was unsafe, and that home birth was necessarily riskier than hospital birth. That belief was based on wishful thinking.

“We do everything to make this as safe as possible” is not evidence of success.

An actual study was done, back then. It was found that home birth in the hands of skilled midwives, and with proper screening, i.e., not attempting to deliver difficult cases at home, was slightly safer than hospital birth, though the difference was not statistically significant. Why? Does it matter why?

However, there is a theory, and I think the statistics supported it. A woman delivering at home is accustomed to and largely immune to microbes present in the home. Not so with the hospital. There are other risks where being at home could increase negative outcomes, but they are relatively rare, and it appears that the risks at least roughly balance. But a great deal would depend on the midwives and how they practice.

(There is a trend toward birthing centers, located adjacent to hospitals, to avoid the mixing of the patient population. This could ameliorate the problem, but not eliminate it. Public policy, though, if we are going to talk about “shoulds,” should not depend on wishful thinking, and too often it does.)

(The best obstetricians, though, professors of obstetrics, wanted to learn from the midwives: How do you avoid doing an episiotomy? And we could answer that from experience. Good scientists are curious, not reactive and protective of “being right,” where anything different from what they think must be “wrong.” And that is, in fact, how the expertise of a real scientist grows.)

Does the paper actually address the definitional and procedural issues? From my first reading, I didn’t see it.

From the Introduction:

 Fringe science has been an important topic since the start of the revolution in the social studies of science that occurred in the early 1970s.2 As a softer-edged model of the sciences developed, fringe science was a ‘hard case’ on which to hammer out the idea that scientific truth was whatever came to count as scientific truth: scientific truth emerged from social closure. The job of those studying fringe science was to recapture the rationality of its proponents, showing how, in terms of the procedures of science, they could be right and the mainstream could be wrong and therefore the consensus position is formed by social agreement.

First of all, consensus in every context is formed by social agreement, outside of very specific contexts (which generally control the “agreement group” and the process). The conclusion stated does not follow from the premise that the fringe “could be right.” The entire discussion assumes that there is a clear meaning to “right” and “wrong,” it is ontologically unsophisticated. Both “right” and “wrong” are opinions, not fact, though there are cases where we would probably all agree that something was right or wrong, but when we look at this closely, they are situations where evidence is very strong, or the rightness and wrongness are based on fundamental human qualities. They are still a social agreement, even if written in our genes.

I do get a clue what they are about, though, in the next paragraph:

One outcome of this way of thinking is that sociologists of science informed by the perspective outlined above find themselves short of argumentative resources for demarcating science from non-science.

These are sociologists, yet they appear to classify an obvious sociological observation as “a way of thinking,” based on the effect, this being argument from consequences, having no bearing on the reality. So, for what purpose would we want to distinguish between science and non-science? The goal, apparently, is to be able to argue the distinction, but this is an issue which has been long studied. In a definitional question like this, my first inquiry is, “Who wants to know, and why?” because a sane answer will consider context.

There are classical ways of identifying the boundaries. Unfortunately, those ways require judgment. Whose judgment? Rather than judgment, the authors appear to be proposing the use of a vague concept of “scientific consensus,” that ignores the roots of that. “Scientific consensus” is not, properly, the general agreement of those called “scientists,” but of those with expertise, as I outline above. It is a consensus obtained through collective study of evidence. It can still be flawed, but my long-term position on genuine consensus is that it is the most reliable guide we have, and as long as we keep in mind the possibility that any idea can be defective, any interpretation may become obsolete, in the language of Islam, if we do not “close the gates of ijtihaad,” as some imagine happened over a thousand years ago, relying on social agreement, and especially the agreement of the informed, is our safest course.

They went on:

The distinction with traditional philosophy of science, which readily
demarcates fringe subjects such as parapsychology by referring to their ‘irrationality’ or some such, is marked.3
For the sociologist of scientific knowledge, that kind of demarcation comprises a retrospective drawing on what is found within the scientific community. In contrast, the sociological perspective explains why a multiplicity of conflicting views on the same topic, each with its own scientific justification, can coexist. A position that can emerge from this perspective is to argue for less authoritarian control of new scientific initiatives – for a loosening of the controls on the restrictive side of what Kuhn (1959, 1977) called ‘the essential tension’. The essential tension is between those who believe that science can only progress within consensual
‘ways of going on’ which restrict the range of questions that can be asked, the ways of asking and answering them and the kinds of criticism that it is legitimate to offer – this is sometime known as working within ‘paradigms’ – and those who believe that this kind of control is unacceptably  authoritarian and that good science is always maximally creative and has no bounds in these respects. This tension is central to what we argue here. We note only that a complete loosening of control would lead to the dissolution of science.

They note that, but adduce no evidence. Control over what? There are thousands upon thousands of institutions, making decisions which can affect the viability of scientific investigation. The alleged argument, stated as contrary “beliefs,” misses that there could be a consensus, rooted in reality. What is reality? And there we need more than the kind of shallow sociology that I see here. Socially, we get the closest to the investigation of reality in the legal system, where there are processes and procedures for finding “consensus,” as represented by the consensus of a jury, or the assessment of a judge, with procedures in place to assure neutrality, even though we know that those procedures sometimes fail, hence there are appeal procedures, etc.

In science, in theory, “closure” is obtained through the acceptance of authoritative reviews, published in refereed journals. Yet such process is not uncommonly bypassed in the formation of what is loosely called “scientific consensus.” In those areas, such reviews may be published, but are ignored, dismissed. It is the right of each individual to decide what information to follow, and what not, except when the individual, or the supervising organization, has a responsibility to consider it. Here, it appears, there is an attempt to advise organizations, as to what they should consider “science.”

Why do they need to decide that? What I see is that if one can dismiss claims coming under consideration, based on an alleged “consensus,” which means, in practice, I call up my friend, who is a physicist, say, and he says, “Oh, that’s bullshit, proven wrong long ago. Everybody knows.”

If someone has a responsibility, it is not discharged by receiving and acting on rumors.

The first question, about authoritarian control, is, “Does it exist?” Yes, it does. And the paper rather thoroughly documents it, as regards the arXiv community and library. However, if a “pseudoskeptic” is arguing with a “fringe believer,” — those are both stereotypical terms —  and the believer mentions the suppression, the skeptic will assert, “Aha! Conspiracy theory!” And, in fact, when suppression takes place, conspiracy theories do abound. This is particularly true if the suppression is systemic, rather than anecdotal. And with fringe science, once a field is so tagged, it is systemic.

Anyone who researches the history of cold fusion will find examples, where authoritarian control is exerted with means that not openly acknowledged, and with cooperation and collaboration in this. Is that a “conspiracy”? Those engaged in it won’t think so. This is just, to them, “sensible people cooperating with each other.”

I would distinguish between this activity as a “natural conspiracy,” from “corrupt conspiracy,” as if, for example, the oil industry were conspiring to suppress cold fusion because of possible damage to their interests. In fact, I find corrupt conspiracy extremely unlikely in the case of cold fusion, and in many other cases where it is sometimes asserted.

The straw man argument, they set up, is between extreme and entrenched positions, depending on knee-jerk reactions. That is “authoritarian control” is Bad. Is it? Doesn’t that depend on context and purpose?

But primitive thinkers are looking for easy classifications, particularly into Good and Bad. The argument described is rooted in such primitive thinking, and certainly not actual sociology (which must include linguistics and philosophy).

So I imagine a policy-maker, charged with setting research budgets, presented with a proposal for research that may be considered fringe. Should he or she approve the proposal? Now there are procedures, but this stands out: if the decider decides according to majority opinion among “scientists,” it’s safer. But it also shuts down the possibility of extending the boundaries of science, and that can sometimes cause enormous damage.

Those women giving birth in hospitals in Europe in the 19th century. They died because of a defective medical practice, and because reality was too horrible to consider, for the experts. It meant that they were, by their hands, killing women. (One of Semmelweiss’s colleagues, who accepted his work, realized that he had caused the death of his niece, and committed suicide.)

What would be a more responsible approach? I’m not entirely sure I would ask sociologists, particularly those ontologically unsophisticated. But they would, by their profession, be able to document what actually exists, and these sociologists do that, in part. But as to policy recommendations, they put their pants on one leg at a time. They may have no clue.

What drives this paper is a different question that arises out of the sociological perspective: What is the outside world to do with the new view?

Sociologists may have their own political opinions, and these clearly do. Science does not provide advice, rather it can, under the best circumstances, inform decisions, but decision-making is a matter of choices, and science does not determine choices. It may, sometimes, predict the consequences of choices. But these sociologists take it as their task to advise, it seems.

So who wants to know and for what purpose? They have this note:

1 This paper is joint work by researchers supported by two grants: ESRC to Harry Collins, (RES/K006401/1) £277,184, What is scientific consensus for policy? Heartlands and hinterlands of physics (2014-2016); British Academy Post-Doctoral Fellowship to Luis Reyes-Galindo, (PF130024) £223,732, The social boundaries of scientific knowledge: a case study of ‘green’ Open Access (2013-2016).

Searching for that, I first find a paper by these authors:

Collins, Harry & Bartlett, Andrew & Reyes-Galindo, Luis. (2017). “Demarcating Fringe Science for Policy.” Perspectives on Science. 25. 411-438. 10.1162/POSC_a_00248. Copy on ResearchGate.

This appears to be a published version of the arXiv preprint. The abstract:

Here we try to characterize the fringe of science as opposed to the mainstream. We want to do this in order to provide some theory of the difference that can be used by policy-makers and other decision-makers but without violating the principles of what has been called ‘Wave Two of Science Studies’. Therefore our demarcation criteria rest on differences in the forms of life of the two activities rather than questions of rationality or rightness; we try to show the ways in which the fringe differs from the mainstream in terms of the way they think about and practice the institution of science. Along the way we provide descriptions of fringe institutions and sciences and their outlets. We concentrate mostly on physics.

How would decision-makers use this “theory”? It seems fairly clear to me: find a collection of “scientists” and ask them to vote. If a majority of these people think that the topic is fringe, it’s fringe, and the decision-maker can reject a project to investigate it, and be safe. Yet people who are decision-makers are hopefully more sophisticated than CYA bureaucrats.

Collins has long written about similar issues. I might obtain and read his books.

As an advisor on science policy, though, what he’s advising isn’t science, it’s politics. The science involved would be management science, not the sociology of science. He’s outside his field. If there is a business proposal, it may entail risk. In fact, almost any potentially valuable course of action would entail risk. “Risky” and “fringe” are related.

However, with cold fusion, we know this: both U.S. Department of Energy reviews, which were an attempt to discover informed consensus, came up with a recommendation for more research. Yet if decision-makers reject research proposals, if journals reject papers without review — Collins talks about that process, is if reasonable, as it is under some conditions and not others — if a student’s dissertation is rejected because it was about “cold fusion,” — though not really, it was about finding tritium in electrolytic cells, which is only a piece of evidence, not a conclusion — then the research will be suppressed, which is not what the reviews purported to want. Actual consensus of experts was ignored in favor of a shallow interpretation of it. (Point this out to a pseudoskeptic, the counter-argument is that “Oh, they always recommend more research, it was boilerplate, polite. They really knew that cold fusion was bullshit.” This is how entrenched belief looks. It rationalizes away all contrary evidence. it attempts to shut down interest in anything fringe. I wonder, if they could legally use the tools, would they torture “fringe believers,” like a modern Inquisition? Sometimes I think so.

“Fringe,” it appears, is to be decided based on opinion believed to be widespread, without any regard for specific expertise and knowledge.

“Cold fusion” is commonly thought of as a physics topic, because if the cause of the observed effects is what it was first thought to be, deuterium-deuterium fusion, it would be of interest to nuclear physicists. But few nuclear physicists are expert in the fields involved in those reports. Yet physicists were not shy about giving opinions, too often. Replication failure — which was common with this work — is not proof that the original reports were false, it is properly called a “failure,” because that is what it usually is.

Too few pay attention to what actually happened with N-rays and polywater, which are commonly cited as precedent. Controlled experiment replicated the results! And then showed prosaic causes as being likely. With cold fusion, failure to replicate (i.e., absence of confirming evidence from some investigators, not others) was taken as evidence of absence, which it never is, unless the situation is so obvious and clear that results could not overlook notice. Fleischmann-Pons was a very difficult experiment. It seemed simple to physicists, with no experience with electrochemistry.

I’ve been preparing a complete bibliography on cold fusion, listing and providing access information for over 1500 papers published in mainstream journals, with an additional 3000 papers published in other ways. I’d say that anyone who actually studies the history of cold fusion will recognize how much Bad Science there was, and it was on all sides, not just the so-called “believer” side, nor just on the other.

So much information was generated by this research, which went all over the map, that approaching the field is forbidding, there is too much. There have been reviews, which is how the mainstream seeks closure, normally, not by some vague social phenomenon, an information cascade.

The reviews conclude that there is a real effect. Most consider the mechanism as unknown, still. But it’s nuclear, that is heavily shown by the preponderance of evidence. The contrary view, that this is all artifact, has become untenable, actually unreasonable for those who know the literature. Most don’t know it. The latest major review was “Status of cold fusion, 2010,: Edmund Storms, Naturwissenschaften, preprint.

Decision-makers need to know if a topic is fringe, because they may need to be able to justify their decisions, and with a fringe topic, flak can be predicted.  The criteria that Collins et al seem to be proposing — my study isn’t thorough yet — use behavioral criteria, that may not, at all, apply to individuals making, say, a grant request, but rather to a community. Yet if the topic is such as to trigger the knee-jerk responses of pseudoskeptics, opposition can be expected.

A decision-maker should look for peer-reviewed reviews in the literature, in mainstream journals. Those can provide the cover a manager may need.

The general opinion of “scientists” may vary greatly from the responsible decisions of editors and reviewers who actually take a paper seriously, and who therefore study it and verify and check it.

A manager who depends on widespread but uninformed opinion is likely to make poor decisions, faced with an opportunity for something that could create a breakthrough. Such decisions, though, should not be naive, should not fail to recognize the risks.

 

On levels of reality and bears in the neighborhood

In my training, they talk about three realities: personal reality, social reality, and the ultimate test of reality. Very simple:

In personal reality, I draw conclusions from my own experience. I saw a bear in our back yard, so I say, “there are bears — at least one — in our neighborhood.” That’s personal reality. (And yes, I did see one, years ago.)

In social reality, people agree. Others may have seen bears. Someone still might say, “they could all be mistaken,” but this becomes less and less likely, the more people who agree. (There is a general consensus in our neighborhood, in fact, that bears sometimes show up.)

In the ultimate test, the bear tears your head off.

Now, for the kicker. There is a bear in my back yard right now! Proof: Meet Percy, named by my children.

I didn’t say what kind of bear! Percy is life-size, and from the road, could look for a moment like the animal. (The paint is fading a bit, Percy was slightly more realistic years ago, when I moved in. I used to live down the street, and that’s where I saw the actual animal.)

Continue reading “On levels of reality and bears in the neighborhood”

Fantasy rejects itself

I came across this review when linking to Undead Science on Amazon. It’s old, but there is no other review. I did buy that book, in 2009, from Amazon, used, but never reviewed it and now Amazon wants me to spend at least $50 in the last year to be able to review books….

But I can comment on the review, and I will. I first comment here.


JohnVidale

August 7, 2011

Format: Hardcover|Verified Purchase

I picked up this book on the recommendation of a fellow scientist with good taste in work on the history of science. I’ll update this, should I get further through the book, but halfway through this book is greatly irritating.

The book is a pretty straightforward story by a sociologist of science, something Dr. Vidale is not (he is a professor of seismology). There are many myths, common tropes, about cold fusion, and, since Dr. Vidale likes Gary Taubes (as do I, by the way), perhaps he should learn about information cascades; Taubes has written much about them. He can google “Gary Taubes information cascade.”

An information cascade is a social phenomenon where something comes to be commonly believed without ever having been clearly proven. It happens with scientists as well as with anyone.

The beginning is largely an explanation of how science works theoretically.

It is not. Sociologists of science study how science actually works, not the theory.

The thesis seems to be that science traditionally is thought of as either alive or dead, depending on whether the issues investigated are uncertain or already decided.

Is that a “thesis” or an observation? It becomes very clear in this review that the author thinks “cold fusion” is dead. As with many such opinions, it’s quote likely he has no idea what he is talking about. What is “cold fusion”?

It was a popular name given to an anomalous heat effect, based on ideas of the source, but the scientists who discovered the effect, because they could not explain the heat with chemistry — and they were experts chemists, leaders in their field — called it an “unknown nuclear reaction.” They had not been looking for a source of energy. They were actually testing the Born-Oppenheimer approximation, and though that the approximation was probably good enough that they would find nothing. And then their experiment melted down.

A third category of “undead” is proposed, in which some scientists think the topic is alive and others think it is dead, and this category has a life of its own. Later, this theme evolves to argue the undead topic of cold fusion still alive, or was long after declared dead.

That is, more or less the basis for the book. The field is now known by the more neutral term of “Condensed Matter Nuclear Science,” sometimes “Low Energy Nuclear Reactions,” the heat effect is simply called the Anomalous Heat Effect by some. I still use “cold fusion” because the evidence has become overwhelming that the nuclear reaction, whatever it is, is producing helium from deuterium, which is fusion in effect if not in mechanism. The mechanism is still unknown. It is obviously not what was thought of as “fusion” when the AHE was discovered.

The beginning and the last chapter may be of interest to those who seek to categorize varieties in the study of the history of science, but such pigeonholing is of much less value to me than revealing case studies of work well done and poorly done.

That’s Gary Taubes’ professional theme. However, it also can be superficial. There is a fine study by Henry H. Bauer (2002). ‘Pathological Science’ is not Scientific Misconduct (nor is it pathological).

One argument I’m not buying so far is the claim that what killed cold fusion is the consensus among most scientists that it was nonsense, rather than the fact that cold fusion is nonsense.

If not “consensus among most scientists,” how then would it be determined that a field is outside the mainstream? And is “nonsense” a “fact”? Can you weigh it?

There is a large body of experimental evidence, and then there are conclusions drawn from the evidence, and ideas about the evidence and the conclusions. Where does observed fact become “nonsense”?

“Nonsense” is something we say when what is being stated makes no sense to us. It’s highly subjective.

Notice that the author appears to believe that “cold fusion” is “nonsense,” but shows no sign of knowing what this thing is, what exactly is reported and claimed.

No, the author seems to be believe “cold fusion is nonsense,” as a fact of nature, as a reality, not merely a personal reaction. 

More to the point, where and when was the decision made that “cold fusion is dead”? The U.S. Department of Energy held two reviews of the field. The first was in 1989, rushed, and concluded before replications began appearing. Another review was held in 2004. Did these reviews declare that cold fusion was dead?

No. In fact, both recommended further research. One does not recommend further research for a dead field. In 2004, that recommendation was unanimous for an 18-member panel of experts.

This is to me a case study in which many open-minded people looked at a claim and shredded it.

According to Dr. Vidale. Yes, there was very strong criticism, even “vituperation,” in the words of one skeptic. However, the field is very much alive, and publication in mainstream journals has continued (increasing after a nadir in about 2005). Research is being funded. Governmental interest never disappeared, but it is a very difficult field.

There is little difference here between the truth and the scientists consensus about the truth.

What consensus, I must ask? The closest we have to a formal consensus would be the 2004 review, and what it concluded is far from the position Mr. Vidale is asserting. He imagines his view is “mainstream,” but that is simply the effect of an information cascade. Yes, many scientists think as he thinks, still. In other words, scientists can be ignorant of what is happening outside their own fields. But it is not a “consensus,” and never was. It was merely a widespread and very strong opinion, but that opinion was rejecting an idea about the Heat Effect, not the effect itself.

To the extent, though, that they were rejecting experimental evidence, they were engaged in cargo cult science, or scientism, a belief system. Not the scientific method.

The sociological understructure in the book seems to impede rather than aid understanding.

It seems that way to Dr. Vidale because he’s clueless about the reality of cold fusion research.

Specifically, there seems an underlying assumption that claims of excess heat without by-products of fusion reactions are a plausible interpretation, whose investigations deserved funding, but were denied by the closed club of established scientists.

There was a claim of anomalous heat, yes. It was an error for Pons and Fleischmann to claim that it was a nuclear reaction, and to mention “fusion,” based on the evidence they had, which was only circumstantial.

The reaction is definitely not what comes to mind when that word is used.

But . . . a fusion product, helium, was eventually identified (Miles, 1991), correlated with heat, and that has been confirmed by over a dozen research groups, and confirmation and measurement of the ratio with increased precision is under way at Texas Tech, very well funded, as that deserves. Extant measurements of the heat/helium ratio are within experimental error of the deuterium fusion to helium theoretical value.

(That does not show that the reaction is “d-d fusion,” because any reaction that starts with deuterium and ends with helium, no matter how this is catalyzed, must show that ratio.)

That Dr. Vidale believes that no nuclear product was identified simply shows that he’s reacting to what amounts to gossip or rumor or information cascade. (Other products have been found, there is strong evidence for tritium, but the levels are very low and it is the helium that accounts for the heat).

The author repeatedly cites international experts calling such scenarios impossible or highly implausible to suggest that the experts are libeling cold fusion claims with the label pathological science. I side with the experts rather than the author.

It is obvious that there were experts who did that; this is undeniable. Simon does not suggest “libel.” And Vidale merely joins in the labelling, without being specific such that one could test his claims. He’s outside of science. He’s taking sides, which sociologists generally don’t do, nor, in fact, do careful scientists do it within their field. To claim that a scientist is practicing “pathological science” is a deep insult. That is not a scientific category. Langmuir coined the term, and gave characteristics, which only superficially match cold fusion, which long ago moved outside of that box.

Also, the claim is made that this case demonstrates that sociologists are better equipped to mediate disputes involving claims of pathological science than scientists, which is ludicrous.

It would be, if the book claimed that, but it doesn’t. More to the point, who mediates such disputes? What happens in the real world?

Clearly, in the cold fusion case, another decade after the publication of this book has not contradicted any of the condemnations from scientists of cold fusion.

The 2004 U.S. DoE review was after the publication of the book, and it contradicts the position Dr. Vidale is taking, very clearly. While that review erred in many ways (the review was far too superficial, hurried, and the process allowed misunderstandings to arise, some reviewers clearly misread the presented documents), they did not call cold fusion “nonsense.” Several reviewers probably thought that, but they all agreed with “more research.”

Essentially, if one wishes to critically assess the stages through which cold fusion ideas were discarded, it is helpful to understand the nuclear processes involved.

Actually, no. “Cold fusion” appears to be a nuclear physics topic, because of “fusion.” However, it is actually a set of results in chemistry. What an expert in normal nuclear processes knows will not help with cold fusion. It is, at this point, an “unknown nuclear reaction” (which was claimed in the original paper). (Or it is a set of such reactions.) Yes, if someone wants to propose a theory of mechanism, a knowledge of nuclear physics is necessary, and there are physicists, with such understanding, experts, doing just that. So far, no theory has been successful to the point of being widely accepted.

One should not argue, as the author indirectly does, for large federal investments in blue sky reinvention of physics unless one has an imposing reputation of knowing the limitations of existing physics.

Simon does not argue for that. I don’t argue for that. I suggest exactly what both U.S. DoE reviews suggested: modest funding for basic research under existing programs. That is a genuine scientific consensus! However, it is not necessary a “consensus of scientists,” that is, some majority showing in a poll, as distinct from genuine scientific process as functions with peer review and the like.

It appears that Dr. Vidale has an active imagination, and thinks that Simon is a “believer” and thinks that “believers” want massive federal funding, so he reads that into the book. No, the book is about a sociological phenomenon, it was Simon’s doctoral thesis originally, and sociologists of science will continue to study the cold fusion affair, for a very long time. Huizenga called it the “scientific fiasco of the twentieth century.” He was right. It was a perfect storm, in many ways, and there is much that can be learned from it.

Cold fusion is not a “reinvention of physics.” It tells us very little about nuclear physics. “Cold fusion,” as a name for an anomalous heat effect, does not contradict existing physics. It is possible that when the mechanism is elucidated, it will show some contradiction, but what is most likely is that all that has been contradicted was assumption about what’s possible in condensed matter, not actual physics.

There are theories being worked on that use standard quantum field theory, merely in certain unanticipated circumstances. Quick example: what will happen if two deuterium molecules are trapped in relationship at low relative momentum, such that the nuclei form the vertices of a tetrahedron? The analysis has been done by Akito Takahashi: they will collapse into a Bose -Einstein condensate within a femtosecond or so, and that will fuse by tunneling within another femotosecond or so, creating 8Be, which can fission into two 4He nuclei, without gamma radiation (as would be expected if two deuterons could somehow fuse to helium without immediately fissioning into the normal d-d fusion products).

That theory is incomplete, I won’t go into details, but it merely shows how there may be surprises lurking in places we never looked before.

I will amend my review if my attention span is long enough, but the collection of objectionable claims has risen too high to warrant spending another few hours finishing this book. Gary Taubes’ book on the same subject, Bad Science, was much more factual and enlightening.

Taubes’ Bad Science is an excellent book on the history of cold fusion, the very early days only. The story of the book is well known, he was in a hurry to finish it so he could be paid. As is common with his work, he spent far more time than made sense economically for him. He believed he understood the physics, and sometimes wrote from that perspective, but, in fact, nobody understands what Pons and Fleischmann found. They certainly didn’t.

Gradually, fact is being established, and how to create reliable experiments is being developed. It’s still difficult, but measuring the heat/helium ratio is a reliable and replicable experiment. It’s still not easy, but what is cool about it is that, per existing results, if one doesn’t see heat, one doesn’t see helium, period, and if one does see heat (which with a good protocol might be half the time), one sees proportionate helium.

So Dr. Vidale gave the book a poor review, two stars out of five, based on his rejection of what he imagined the book was saying.


There were some comments, that can be seen by following the Unreal arguments link.

postoak6 years ago
“Clearly, in the cold fusion case, another decade after the publication of this book has not contradicted any of the condemnations from scientists of cold fusion.” I think this statement is false. Although fusion may not be occurring, there is much, much evidence that some sort of nuclear event is taking place in these experiments. See http://www.youtube.com/watch?v=VymhJCcNBBc
The video was presented by Frank Gordon, of SPAWAR. It is about nuclear effects, including heat.
JohnVidale  6 years ago In reply to an earlier post
More telling than the personal opinion of either of us is the fact that 3 MORE years have passed since the video you linked, and no public demonstration of energy from cold fusion has YET been presented.
How does Dr. Vidale know that? The video covers many demonstrations of LENR. What Dr. Vidale may be talking about is practical levels of energy, and he assumes that if such a demonstration existed, he’d have heard about it. There have been many demonstrations. Dr.  Vidale’s comments were from August 2011. Earlier that year, there was a major claim of commercial levels of power, kilowatts, with public “demonstrations.” Unfortunately, it was fraud, but my point here is that this was widely known, widely considered, and Dr. Vidale doesn’t seem to know about it at all.
(The state of the art is quite low-power, but visible levels of power have been demonstrated and confirmed.)
Dr. Vidale is all personal opinion and no facts. He simply ignored the video, which is quite good, being a presentation by the SPAWAR group (U.S. Navy Research Laboratory, San Diego) to a conference organized by Dr. Robert Duncan, who was Vice Chancellor for Research at the University of Missouri, and then countered the comment with simple ignorance (that there has been no public demonstration). 
Taser_This 2 years ago (Edited)
The commenters note is an excellent example of the sociological phenomenon related to the field of Cold Fusion, that shall be studied along with the physical phenomenon, once a change of perception of the field occurs. We shall eventually, and possibly soon, see a resolution of the clash of claims of pathological science vs. pathological disbelief. If history is any indicator related to denial in the face of incontrovertible evidence (in this case the observation of excess heat, regardless of the process of origin since we know it is beyond chemical energies) we shall be hearing a lot more about this topic.

Agreed, Dr. Vidale has demonstrated what an information cascade looks like. He’s totally confident that he is standing for the mainstream opinion. Yet “mainstream opinion” is not a judgment of experts, except, of course, in part.

Dr. Vidale is not an expert in this field, and he is not actually aware of expert reviews of “cold fusion.” Perhaps he might consider reading this peer-reviewed review of the field, published the year before he wrote, in Naturwissenschaften, which was, at the time, a venerable multidisciplinary journal,  and it had tough peer review. Edmund Storms, Status of cold fusion (2010). (preprint).

There are many, many reviews of cold fusion in mainstream journals, published in the last  15 years. The extreme skepticism, which Vidale thinks is mainstream, has disappeared in the journals. What is undead here is extreme skepticism on this topic, which hasn’t noticed it died.

So, is cold fusion Undead, or is it simply Alive and never died?


After writing this, I found that Dr. John Vidale was a double major as an undergraduate, in physics and geology, has a PhD from Cal Tech (1986), and his major focus appears to be seismology.

He might be amused by this story from the late Nate Hoffman, who wrote a book for the American Nuclear Society, supported by the Electric Power Research Institute, A Dialogue on Chemically Induced Nuclear Effects: A Guide for the Perplexed About Cold Fusion (1995). Among other things, it accurately reviews Taubes and Huizenga. The book is written as a dialogue between a Young Scientist (YS), who represents common thinking, particularly among physicists, and Old Metallurgist (OM), which would be Hoffman himself, who is commonly considered a skeptic by promoters of cold fusion. Actually, to me, he looks normally skeptical, skepticism being essential to science.

YS: I guess the real question has to be this: Is the heat real?

OM: The simple facts are as follows. Scientists experienced in the area of calorimetric measurements are performing these experiments. Long periods occur with no heat production, then, occasionally, periods suddenly occur with apparent heat production. These scientists become irate when so-called experts call them charlatans. The occasions when apparent heat occurs seem to be highly sensitive to the surface conditions of the palladium and are not reproducible at will.

YS: Any phenomenon that is not reproducible at will is most likely not real.

OM: People in the San Fernando Valley, Japanese, Columbians, et al, will be glad to hear that earthquakes are not real.

YS: Ouch. I deserved that. My comment was stupid.

OM: A large number of of people who should know better have parroted that inane statement. There are, however, many artifacts that can indicate a false period of heat production. The question of whether heat is being produced is still open, though any such heat is not from deuterium atoms fusing with deuterium atoms to produce equal amounts of 3He + neutron and triton + proton. If the heat is real, it must be from a different nuclear reaction or some totally unknown non-nuclear source of reactions with energies far above the electron-volt levels of chemical reactions.

As with Taubes, Hoffman may have been under some pressure to complete the book. Miles, in 1991, was the first to report, in a conference paper, that helium was being produced, correlated with helium, and this was noticed by Huizenga in the second edition of his book (1993). Hoffman covers some of Miles’ work, and some helium measurements, but does not report the crucial correlation, though this was published in Journal of Electroanalytical Chemistry in 1993.

I cover heat/helium, as a quantitatively reproducible and widely-confirmed experiment, in my 2015 paper, published in a special section on Low Energy Nuclear Reactions in Current Science..

Of special note in that section would be McKubre, Cold fusion: comments on the state of scientific proof.

McKubre is an electrochemist who, when he saw the Pons and Fleischmann announcement, already was familiar with the palladium-deuterium system, working at SRI International, and immediately recognized that the effect reported must be in relatively unexplored territory, with very high loading ratio. This was not widely understood, and replication efforts that failed to reach a loading threshold, somewhere around 90% atom (D/Pd), reported no results (neither anomalous heat, nor any other nuclear effects). At that time, it was commonly considered that 70% loading was a maximum.

SRI and McKubre were retained by the Electric Power Research Institute, for obvious reasons, to investigate cold fusion, and until retiring recently, he spent his entire career after that, mostly on LENR research.

One of the characteristics of the rejection cascade was cross-disciplinary disrespect. In his review, Dr. Vidale shows no respect or understanding of sociology and “science studies,” and mistakes  his own opinions and those of his friends as “scientific consensus.”

What is scientific consensus? This is a question that sociologists and philosophers of science study. As well, most physicists knew little to nothing about electrochemistry, and there are many stories of Stupid Mistakes, such as reversing the cathode and anode (because of a differing convention) and failing to maintain very high cleanliness of experiments. One electrochemist, visiting such a lab, asked, “And then did you pee in the cell?” The most basic mistake was failing to run the experiment long enough to develop the conditions that create the effect. McKubre covers that in the paper cited.

(An electrolytic cathode will collect cations from the electrolyte, and cathodes may become loaded with fuzzy junk. I fully sympathize with physicists with a distaste for the horrible mess of an electrolytic cathode. For very good reasons, they prefer the simple environment of a plasma, which they can analyze using two-body quantum mechanics.

I sat in Feynman’s lectures at Cal Tech, 1961-63, and, besides his anecdotes that I heard directly from him when he visited Page House, I remember one statement about physics: “We don’t have the math to calculate the solid state, it is far too complex.” Yet too many physicists believed that the approximations they used were reality. No, they were useful approximations, that usually worked. So did Ptolemaic astronomy.)

Dr. Vidale is welcome to comment here and to correct errors, as may anyone.

Update, December 19, 2018

Apparently I sent Vidale an email notifying him of this post, I normally do that as a courtesy with reviews.  I could not find the email, which is a bit puzzling. It was likely very brief with a link, as he stated. I recall no response, but this showed up, a screenshot posted by a troll on Encyclopedia Dramatica (a satire site):

As before, no response is required, but, again, I will notify Vidale unless he requests no emails. The troll who posted that image is also the troll who, with his brother, created and maintained the RationalWiki article, and Vidale’s comment is being used as a proof that I’m a troll. Circular.

Of course, Vidale did, in fact,  respond, just not in situ and not where it would be likely to be seen by me. Some people have a weird idea of what “no response” means.

I could not find the post, my guess is that it was taken down. Vidale followed and believed the claims of twin brothers who are the most disruptive trolls I have ever seen, though, to be sure, the internet is vast and I haven’t seen everything!

Let’s Move the Needle with our Core Competencies

This post was inspired by Cole Schafer, a professional copy writer, and it shows.

We don’t need everyone to buy in , but if we open the kimono, we can attract a few good men. Ahem, scientists, people.

Empower the community with this bleeding edge technology, instead of drinking the Kool-Aid, that Rossi or Widom-Larsen will save us.

Put out some feelers and develop our human capital!

LENR has lots of moving parts, so, double-checking, get our ducks in a row, stop working in silos, and accept that it’s just business!

If we each give 110%, we will . . .

Take a nap, that’s my idea. Whew!

110%, 24/7! Let me sit down. I just cleaned up much of my office.

Continue reading “Let’s Move the Needle with our Core Competencies”

Russ George and the D2Fusion team

Laura Chao, 24. Nuclear researcher at D2Fusion, a Foster City company working on generating clean, renewable energy from solid-state fusion.

This page (October 1, 2006) was linked from the defunct D2Fusion web site.

Russ George has been popping up in LENR circles again, so I decided to check out the history (which I knew mostly as rumor from people he had formerly worked with, in circles where he had apparently become persona non grata), and I found the image above, which I put here as eye candy. Nice, eh? I hope her experience with cold fusion was not a total bust and that her life has been productive and worthwhile. I don’t see that she has been mentioned anywhere else on this topic. Great photo, though!

Some comments from the article on Chao:

75912  Posted 10.25.06

“Too bad Chao didn’t read the expose on D2Fusion in the May, 2006 New Energy Times. “

75913 Posted 12.19.06

“Too bad ‘75912’ was taken in by the New Energy Times attack on d2fusion.”

Laura later blogged about cold fusion (March, 2007) and about the fun she was having at work. And more.

And even more, an embarrassment of riches. “My professional life is not progressing as planned.”

She is a fantastic blogger. Her response to an actual question about cold fusion is priceless. And then:

Lies Lies Lies (September 1, 2007) (my emphasis added)

“Your CEO says that your lab is melting,” JB whispered into my ear.

For the purpose of the 7×7 Hot 20 Under 40 party, my company had printed me brand new business cards that read “Nuclear Physicist,” despite the fact that my official title was actually ‘science technician.’

In light of my situation, I decided to enlist support. Showing up with my friend JB, the CTO of Tesla Motors (who used to be a fusion researcher himself), would help me obtain the outrageous amount of publicity my company was expecting me to generate, and also satisfy the magazine, which had advertised me as the up and coming genius of the year. (Geez, no pressure.) My CEO, unfortunately, failed to inquire into JB’s past before lecturing him about our runaway success in cold fusion.

“Apparently, the fusion is so out of control,” JB said, barely able to hold back his laughter as he repeated my CEO’s claims, “that your laboratory instruments keep vaporizing. HAHAHAHAHAHA!”

I should have known right then that eventually (read: very soon) the company would no longer be a company.

The job has evaporated by December, 2007. (Laura Chao had a bachelor’s degree in mechanical engineering.) I assume the CEO was George.

January 10, 2008, the link to her as a “D2F scientist” was still up. The D2Fusion.com site went “down for maintenance” February 10, and stayed that way, until it vanished after July 8, 2008. In 2012, Godaddy put the domain up for sale.  It’s now a strange spam-y site.

Laura Chao’s last blog post was in March, 2013. Brilliant, actually.

So … the New Energy Times “expose.”  Steve Krivit is a yellow journalist, it’s his shtick.  He’s also done a lot of work, and what he has written about Russ George appears to be well-supported.

So Russ George on LENR Forum. His own thread. 

Here is the very RAW geiger data one can see some excursions well above the long duration ‘background’ counts. Given the relative insensitivity of Geigers to gamma (or x-ray) photons the Androcles deuterated fuel mixture is doing something quite extraordinary as there is only a fraction of a gram of fuel mix, about the volume of 5-10 grains of rice. https://www.lenr-forum.com/attachment/5106-andro-may7-pdf/

What is immediately noticeable is that the “excursions” are occurring at 24-hour intervals. No evidence is presented connecting the counts with the fuel mix. The LF user who questions what had been done is banned on LF, by Alan Smith, who is sponsoring George’s current research. George reveals his thinking about Andrea Rossi:

seven_of_twenty wrote:

RussGeorge

Is the above cryptic statement intended to mean that you still think Rossi has demonstrated LENR? If so, why on Earth would you think it, given all the evidence to the contrary over the past 7+ years?

No number of blowhard armchair trolls is worth one iota of real data, so what is your point. Rossi has shown plenty of interesting data that speaks to those skilled in the art.

The art of the con, indeed. It takes one to know one.

Russ George took research possibilities and turned them into personal promotion, he was more blatant in this than Rossi. Both managed, for a time, to impress, in some way or other, real scientists.

There are real investors looking for opportunities to support cold fusion, and they tested Rossi’s claims, and his devices, to the hilt, and found nothing but lies, damn lies, and no statistics.

One  LF user (Dewey Weaver) actually represents them (though not officially on that forum). These people have invested on the order of $70 million in LENR over the last few years, they literally put their money where their mouth is. They don’t talk much, in fact.

Russ George is a big talker, talking big, always sure of himself. And then there is Alan Smith.