Goalposts: What are we trying to explain?

Subpage of Steven Byrnes

On Byrnes’ blog: Goalposts: What are we trying to explain?

There are a variety of phenomena under the heading of “cold fusion”, but for now I’m primarily thinking about the oldest, most famous, and most-widely-tested aspect: Heat produced in palladium-deuteride systems, which is (allegedly) due to the D + D → He4 nuclear reaction.

Okay, here is the problem in a nutshell: who claimed that the heat was due to the d+d reaction? Pons and Fleischman did not. They claimed that it was an “unknown nuclear reaction.”

Heat is not fusion, but fusion is one possible mechanism for generating heat.

If D + D → He4 is really what’s going on, it has a number of properties which are awfully hard to explain. The cold-fusion skeptic John Huizenga described these as the “miracles” of cold fusion, in the sense that they have no possible explanation. Anyway, everyone agrees that a plausible theory of cold fusion would at minimum need to answer the following two questions:

Indeed. But notice the switcheroo here. From explaining heat, it has become explaining how it could be d+d. It is clear that, at this point at least, Byrnes is thinking of “cold fusion” as being synonymous with d+d fusion. In fact, “cold fusion” is a set of experimental results indicating a possible nuclear reaction, and rather strongly indicating that it is not d+d fusion, though there are still some long shots, and until we know what is actually happening, nothing can be ruled out completely. But I would place d+d down somewhere around the gremlin theory, or maybe something just a little more likely, like creation of ULM neutrons. Still ridiculously unlikely.

Why doesn’t the Coulomb barrier prevent fusion from occurring in the first place? Since the two nuclei are positively charged, they repel very strongly until they get so close that they can fuse. It can happen at extremely high temperatures or pressures, as in a thermonuclear bomb, or a star, or a tokamak, or using a laser the size of a football stadium. It can also happen if you accelerate a beam of deuterons to a high speed, and shoot it into other deuterons, as in a Farnsworth Fusor (try it at home!). It can also happen in muon-catalyzed fusion, for well-understood reasons. But it is difficult to see how the Coulomb barrier could be overcome in a cold-fusion experiment.

Muon-catalyzed fusion shows that a condition is possible that allows the nuclei to get close enough to fuse by tunneling. The question, then, is whether or not it is possible for some other condition to create the same. We must, to be through, ask the question in its most general form. Is it possible that some condition allows a nuclear reaction to take place outside of the known regimes?

The question is an obvious one, but the question is asked out of a sane sequence. Nobody in their right mind would have expected the FP Heat Effect. (F and P did not, but thought that they might be able to detect *something*.) So the first question is whether or not the effect is real, not if it could be caused by fusion or some other nuclear reaction. That is an experimental question, not a question for nuclear theory. First step: confirm the heat, and if confirmation fails, realize that such heat must be uncommon, or it would have been seen before.

(In fact, it probably was seen before, but dismissed as just one of those many unexplained artifacts, given that fusion was so unlikely, for all the obvious reasons.)

If it is uncommon, it must take special conditions, not common ones (and loading PdD to normal full loading — maybe 70% — was reasonably common). McKubre wrote that, having been quite experienced with palladium deuteride, he realizing immediately that they must have loaded above that assumed limit. We now know that the effect with the FP experiment does not appear until roughly 85%, and heat shows a positive correlation with loading in that work, increasing, generally, with loading, but loading alone is not sufficient as a condition.

Therefore it was not surprising that many attempts to replicate the experiment failed, and that’s a long story, but the causes of those failures are now reasonably well understood. Mostly, not enough loading, not a long enough preparation period (with loading repeated), and material that simply won’t work, especially pure Pd, well-annealed. Useless. (We now have some better ideas, it is possible and still  not tested that the necessary material is gamma or delta phase PdD, which is not normally formed simply from loading Pd. Long story, only now being developed. Metallurgy. A necessary field of expertise for understanding cold fusion.

Those who have studied such things, experts, are generally in agreement that there is, indeed, anomalous heat. But is it nuclear?

(Yes, from the preponderance of the evidence, and I published a paper on this under peer review (Current Science, Lomax, 2015). If someone doubts this conclusion, I would hope that they have the cojones or other necessary characteristics to write a critical review and submit it. If it is well-written, I would work to encourage publication. I’d even consider co-authorship, if issues are raised that are worthy of consideration, and that is quite possible.)

If D+D fusion is occurring, why does it only create helium-4, and why doesn’t it create comparable quantities of helium-3, tritium, neutrons, and gamma-rays?

This question is easy to answer, in fact. Because the reaction is not d+d fusion. If it is fusion at all, which is a preponderance of the evidence conclusion for me at this point, it is not that mechanism. I keep being pleased to see that Byrnes has more knowledge than your average pseudoskep. Maybe he is even a real skeptic, and, as I have been saying, such are worth their weight in gold. Genuine skepticism, if combined with curiosity, will break the rejection cascade, my opinion. It’s risky, Byrnes should know that. Giving cold fusion the time of day can be a career-killer, or it has been in the past. That will shift, my opinion, but he should know the risks.

That’s what normally happens in conventional “hot” D-D fusion. In fact, if cold fusion produced neutrons at the same “branching ratio” as you expect from “hot” D-D fusion, it would be easily detected in the experiments … by the radiation-poisoning death of everyone in the room!

Yes, unless the experiment was well-shielded, and these were not. It would be deadly from the neutrons. Only if the heat were all produced by d-d fusion to helium (which is what rate? About 10-7?) would the gammas be a big problem.

So, are gammas necessary? There are efforts to look at how d-d fusion could take place, suppressing the two common branches, and only producing helium, but my sense is that these will fail, if only looking at d-d fusion. My reason is rooted in how the gamma is generated, and at the behavior of muon-catalyzed fusion, which produces the same branching ratio as normal hot fusion, even though it has been observed at a temperature close to absolute zero. We might at some point describe the physics of that fusion process. I don’t think there is a way to avoid the gamma, but this is probably unnecessary and trying to develop theory for something without having adequate data is silly upon silly.

Until we have clear evidence that the reaction is d+d, there is no need to stand on our heads to figure out how it is possible. If the evidence for a cold nuclear reaction is weak, the first steps would be to investigate the basics more throughly, not to try to figure out how it could happen. Anything is possible, that’s a place to start in approaching life and science, and then, that something is possible does not mean it happens in a real universe within finite time. Our task, then, is to find out what actually happens, and then sound theory is a map, a way of predicting what will happen.

But we don’t give people a map and have them drive with their eyes closed. We must always be prepared for maps to be defective or obsolete or, sometimes, just plain wrong.

Actually, neutrons and tritium are sometimes seen in tiny tiny amounts (if I understand correctly), but it’s such a low level that it could only be a “side-channel” at best, as opposed to the main event producing all that heat.

Yes, he understands correctly. (I really like his approach, in many ways.) I will state the fact with more precision and a quick approximation. The widely confirmed other product, after helium, is tritium. There are so many independent reports of tritium that most consider the production of tritium as a reality, and attempts to dismiss this as contamination (or worse, fraud) appear to be a kind of wishful thinking, that an inconvenient fact will go away because we don’t understand it.

Tritium is about a million times down from helium,. and neutrons another million times down from tritium. That takes neutrons to a level close to background. There are enough neutron reports, with some consistency, that there are probably a few neutrons being generated. We can look at those reports in more detail elsewhere.

This is not d-d fusion. One of the correlations reported was, by the way, tritium with neutrons, as roughly a million to one. Nobody has ever shown a correlation between helium and tritium. It’s one of the aspects of the history that boggles my mind. The reason is that experiments generally looked for heat, or they looked for neutrons and/or tritium. Those that looked for both often found neither. It is also quite possible, but not confirmed, that tritium production happens under conditions other than those that favor heat production. Storms thinks that tritium production depends on the H/D ratio in the “fuel.” He may be right about that.

Tritium is much easier to measure with confidence than heat, if we are talking about low levels.

So, obviously the reaction is proceeding in a different way than hot fusion. What is it, and why? (The constraints will be discussed more in the next post.)
Cold-fusion skeptics think that there is no theory that answers these questions. Proponents have offered a variety of theories that they claim DO answer these questions. Should we believe them? We shall find out! Stay tuned!

What do we call someone who thinks cold fusion is real, based on a review of the evidence? “Believer” doesn’t work. I don’t “believe in cold fusion”. Rather, I “accept” that the evidence indicates that the effect is real, and that it is nuclear in nature, and is probably the result of the conversion of deuterium to helium, mechanism unknown. That is a falsifiable conclusion, with an obvious and accessible path to verification (and it is already widely confirmed, with there being room for an increase in precision).

Some theoreticians seem to “believe in” theories they develop. Bad Idea. Hagelstein doesn’t, that’s one of his strong points. I often refer to his work as the “theory du jour.” I have noticed that Byrnes has looked at some of Hagelstein’s work.

I am unaware of any plausible theory (I get to define what is “plausible,” in the absence of a better definition) that satisfactorily “explains” the observed phenomena called “cold fusion.”

No, we should not “believe them,” i.e., the theories advanced. Where possible, we should test them, and where that is not possible, we should distinguish them as either pseudoscience or protoscience (i.e., theory formation that has not yet arrived at designing tests). As beliefs, such theories are clearly pseudoscientific.

Leave a Reply