Subpage of Steven Byrnes
Blog: May 6, 2014
They actually say that the electron mass is increased not just to 1.3MeV but way beyond that, up to 10.5 MeV/c2, twenty times higher than the textbook value. (eq 6 and 27).
I want to say immediately that this claim is crazy and I don’t believe it for a second. But that’s a story for a future blog post. For today, I will assume for the sake of argument that Widom and Larsen calculated the mass increase correctly. I’ll focus instead on understanding the mass increase and its consequences.
A changing electron mass may sound weird and abstract. But don’t worry! I’m going to try to explain it intuitively.
And he does try. Widom-Larsen theory is not grounded in observation, and does not actually proceed as claimed, using standard physics.
I’m not going over this in detail, it is far too much work for a project I already know is likely to be useless. I.e., Widom-Larsen theory has never created usable predictions that were confirmed. It is an “ad hoc theory” that puts together pieces in order to match some of the experimental evidence, but not all. At some point here, I will return to basics. Why do we need a “cold fusion theory?
If there were a theory that would stand up to scrutiny, it is possible that it would shift the attitude of physicists. That could be useful. However, the theory is pseudoscientific if it cannot be tested, and no known tests have been performed to test WL theory. (That it supposedly “predicts,” say, the abundances of transmutations in one set of experiments, that roughly match another set, is a post-hoc prediction. Not good enough.) As for the usefulness of the theory in designing experiments, again, there has been, in a dozen years, in spit of much hoopla and attention, no success at this.
One of the fundamental necessities for the theory to even begin to match experiment is the “gamma shield.” That would be extraordinarily useful, if it actually worked. There is zero evidence that it does and many theoretical reasons why it would not. The absorption of gammas by the “patches” has never been shown, in spite of its needing to be extremely efficient to function. As with many aspects of this hoax, objections on this basis are waved away as invalid, giving nonsense reasons. If the patches are so transient as to be undetectable, they could not catch activation gammas, which are radioactivity, stochastic, man are not immediate, and the geometry of the situation doesn’t work. Radiation would be emitted in all directions, not just toward the “patches.” Thus the “shield” must cover a wide area, and it must cover it *after* the heavy electron has created a neutron. So there must be many heavy electrons, and thus much energy invested in them, which a collective effect cannot do (it could make a few, the question, as I often point out, is rate. The whole idea is that the energy of many electrons is then collected in a few. So “many,” enough to make an effective shield, is in contradiction to this.)
The theory has failed to convince LENR researchers, who very much want a viable theory, and W-L proponents lie about the sense of the community. WL theory has failed to convince the mainstream. Hence it’s useless. Attempts to understand it simply lead to more confusion.
W-L theory hitches a ride on the rejection cascade, attempting to convince skeptics that, yes, they are right, it’s not “fusion.” That is true in one way only: it is not “d-d fusion.” Pons and Fleischmann were quite aware that this phenomenon did not behave like d-d fusion. They called the source of the heat an “unknown nuclear reaction,” not fusion and certainly not d-d fusion.
However, W-L theory is designed to be able to “predict” almost whatever result is wanted. Reaction sequences proposed pay no attention to rate and there is a complete failure to address intermediate products. The analyst may choose from a vast smorgasbord of “possible reactions” in order to create an “effect” that matches some experimental result. These are not first-principles analyses, they are not a sign of a mature theory. They are a sign of someone putting together an ‘explanation” that does nothing more than make the theorist look smart, to those who are ignorant of the physics or of cold fusion experimental results.
There were many who were intrigued by the idea at first, and they said as much, and those sayings are then promoted as proof of acceptance. But cold fusion researchers who accept W-L theory are rare. Nobody appears to be using it for experimental design. If NASA did it, that could explain why they came up empty. (Krivit then has a whole story about how NASA refused to pay Larsen for consulting, hence their failure would be their fault. But a sound theory could be used by anyone, unless critical pieces have been left out. A similar story is told about Andrea Rossi by those who still support him.
He didn’t trust Industrial Heat, so he did not tell them the “secret,” even though he was contractually obligated to do so. Then, when they could not independently make devices that worked as claimed, they didn’t want to give him more money. So he sued them. Now, if the devices didn’t work because the secret sauce was missing, then Rossi, by not disclosing that, caused their failure, so suing them for that very failure would be, at least, highly unethical. But Rossi followers don’t put two and two together, or if they do, they get 1 MW and Rossi Will Change The World.
Byrnes is going to fail to find a “plausible cold fusion theory” because the quest was designed to fail. I don’t mean that he intended to fail, but that he did not design it to succeed. If one is convinced that something is nonsense, it is extremely difficult to understand what might be partially true about it. This leads to many inconsistencies in Byrnes’ examination. Nevertheless, he does make strenuous efforts to understand, but what he was attempting to understand was the weakest aspect of CMNS research.
Having spent about a decade studying LENR and writing about it, my early opinion (largely derived from Storms) has not changed: no cold fusion theory is satisfactory.
However, it is possible that some theories have aspects to them that are close to the truth. A successful cold fusion theory may be a Chinese dinner, some from Menu A, some from Menu B, some from Menu C.
Now will that theory be “plausible”? That’s actually a standard that is likely to fail. It might be plausible, but … most of the obvious ideas have been worked over.
Further, one of the most successful bodies of theory of the last century is implausible, i.e., defying common sense. Except it works. So a successful cold fusion theory need not be plausible, but it would need to be usable for prediction (and especially for experimental design).
It does not actually need to be truth. Ptolemaic astronomy was not “true”, there are no epicycles in planetary motion, but the theory was a model that enabled reasonably accurate prediction. So it worked, and remained until something better was found.
The first and foremost task in examining cold fusion is not how it works, but what it does. What we call cold fusion appears to convert deuterium to helium, and it’s easy from that to imagine that this means d-d fusion, but it does not and, practically speaking, could not. It is something else, something not expected.
Takahashi’s calculations with his Tetrahedral Symmetric Condensate are the first ones I have seen which actually predict a fusion rate, from first principles. Unfortunately, we don’t know enough about the conditions that the TSC will face to be able to translate that into an experimental rate. So it is simply a piece of a puzzle, not the whole image. And that fusion is possible, which he showed — if his math is correct — does not show that the mechanism he describes is the real mechanism.
We don’t have nearly enough information to tell, unless someone stumbles across something new, such as an X-ray spectrum from his BOLEP idea. That would take us back closer to the fusion event and might identify the fused nucleus. If we are lucky.