Subpage of Fleischmann

Britz Flei1990. Copy of paper on lenr-canr.org.


It is shown that accurate values of the rates of enthalpy generation in the electrolysis of light
and heavy water can be obtained from measurements in simple, single compartment Dewar type
calorimeter cells. This precise evaluation of the rate of enthalpy generation relies on the nonlinear
regression fitting of the “black-box” model of the calorimeter to an extensive set of
temperature time measurements. The method of data analysis gives a systematic underestimate
of the enthalpy output and, in consequence, a slightly negative excess rate of enthalpy generation
for an extensive set of blank experiments using both light and heavy water. By contrast, the
electrolysis of heavy water at palladium electrodes shows a positive excess rate of enthalpy
generation; this rate increases markedly with current density, reaching values of approximately
100 W cm-3 at approximately 1 A cm-2. It is also shown that prolonged polarization of palladium
cathodes in heavy water leads to bursts in the rate of enthalpy generation; the thermal output of
the cells exceeds the enthalpy input (or the total energy input) to the cells by factors in excess of
40 during these bursts. The total specific energy output during the bursts as well as the total
specific energy output of fully charged electrodes subjected to prolonged polarization (5-50 MJ
cm-3) is 10– 10times larger than the enthalpy of reaction of chemical processes.

This paper was intended to be the full monte, the earlier paper Britz Flei1989a being a preliminary note. By this time they knew what a firestorm of critique had been raised. It would be crucial that this paper be bulletproof, as to what it confidently claims, and that any speculations or weaker inferences be stated as such, if at all.

Fleischmann and Pons were suffering from a disability: they had seen the aftermath of a meltdown, probably in late 1984. They had no possible chemical explanation for the extremity of that meltdown. So they were convinced that nuclear-level heat was possible, and they treat that as a fact. But almost nobody else witnessed that meltdown, they appear to have actively concealed it. They published little about it, beyond stating the size of the cathode (1 cm3), nor has there been any report that they kept the materials, what was left of the cathode being the most crucial, as well as fragments from the incident. They did not report if the power supply, when they discovered the meltdown, was on or off, and, in particular, what current it was set to deliver, assuming constant current. It has only been stated (Beaudette, Excess Heat, 2nd edition, 2002, p. 35) that they had raised the current to 1.5 A, and that Pons’ son had been sent to turn it off for the night.

1.5 A , for a 1 cm cube, would be about 250 mA cm-2. In fact, because palladium expands when loaded, by a variable amount depending on exact material conditions, it would be a somewhat lower density than that. Later, their experiments, with substantially smaller cathodes (Morrison calls them “specks,” which was misleading polemic), used a current density as high as “1024 mA cm-2.”

(The implied precision of that figure was overstated, it was purely nominal, obviously based on a series of experiments that set current so that calculated density would be in powers of two. What was actually controlled was current — or voltage under some conditions –, not current density.)

The precision and accuracy of the Fleischmann-Pons calorimetry is still debated. Toward studying this, I have extracted the experimental results found in the subject paper. There is a plot of results on page 26 of the preprint (page 319 as published):

Fig. 12. Log-log plot (excess enthalpy vs. current density) of the data in Tables 3 and A6.1.

And then I used https://www.pdftoexcel.com/ to convert, in a flash, the Tables 3 and A6.1 (preprint pagesˋ19 and 52) to Excel spreadsheets, which can be opened by many spreadsheet programs. On my iPhone, they immediately opened as spreadsheets. There are some errors to be cleaned up, but the data looks good.

Table 3 and the text of the page: 19_Fleischmancalorimetr.xlsx
Table A6.1 and the text of the page: 52_Fleischmancalorimetr.xlsx

Enjoy! (To be continued . . . I will clean up the spreadsheets and create some plots.)


Leave a Reply