Focardi’s TedX talk

Translation from E-Catworld.

(The video may also be viewed with CC translation on YouTube, cursor at the bottom of the screen, press the CC button.)

My comments are indented.


The following Transcription and Translation of “TEDxBologna – Sergio Focardi – L’E-cat e la fusione nucleare con il Nichel e l’Idrogeno “ is released under Public Domain by its author Mirco Romanato its author.

Anything wrong in the transcription and in the translation is my fault. 

I have often pointed out that there is work that can be done to support investigation of LENR, and that deep knowledge is not required, only some level of effort and attention — and it can be fun. Translating a video can seem like work, but, in fact, one who does translations will learn a great deal. Ask Jed Rothwell. Or me, for that matter: I don’t do translations, but I often reformat and copy-edit documents. Seeing the text, even if I don’t “study” it, creates exposure and exposure creates familiarity, and familiarity develops understanding. Those who are interested in following this path through the wilderness, ask me! There are millions of entry points, you can find your own, but having some guidance can help you get started. My thanks to Mirco, and as to any errors, we wisely never let the possibility of error stop us, trusting that our friends will point them out. In fact, our enemies also will, so, if we frame this usefully, our enemies can also be our friends, provided we pay attention.

00:24 The talk I want to do, I’m starting from the origin, is about what today is called Cold Fusion.

The term can lead to confusion. Martin Fleischmann regretted mentioning it. It was premature, and in some ways it is still premature, until the reaction is clearly understood based on verified confirmation and strong evidence, and it is not. We may be close to clear and unmistakable confirmation of what the reaction discovered by Pons and Fleischmann does, but not how it does it. With NiH reactions, Focardi’s primary subject here, we don’t know the ash, what he states was an error, possibly a result of deceptive diversion, but no longer claimed even by Rossi.

00:30 It started around 22 years ago when an American researcher, an American chemist, stated to have produced energy using a nuclear fusion process obtained using Palladium, a metal, and Deuterium, a heavy Hydrogen.

The “statement” was an error, in that it was premature. Fleischmann was not an American chemist, but was working with one, Stanley Pons, and the work was done at the University of Utah, which is, of course, an American university. Martin was British. In fact, the first paper did not claim fusion, though the title was misprinted; Martin claimed. In the rush to publish, Electrochemically induced nuclear fusion of deuterium? dropped the question mark. However, that may have been a later rationalization, because the second document published, 29 June 1989, had a title claiming cold fusion. Fleischmann, M., et al., Measurements of gamma-rays from cold fusion. Nature (London), 1989. 339(622): p. 667.

The gamma ray findings were blatant error, and Petrasso, in that issue, apparently demolished the argument. What Pons and Fleischmann actually found was anomalous heat, which, as chemists, they considered implied too high an energy density to be chemical in nature. The first paper actually claimed, in the text, after some speculation about known fusion reactions — all an error, unwarranted (in hindsight) — “an hitherto unknown nuclear process or processes (presumably again due to deuterons).” The “presumably” was probably misleading as well, certainly it was premature. Using circumstantial evidence when exploring something totally new is … weak, useful only for speculation and creating questions to be addressed experimentally. What seems likely to me — we still do not know for sure — is that molecular deuterium is involved, the electrons are crucial to the process, but “deuterons” implies the ions and the reaction being located inside the palladium lattice, which, AFAIK, Fleischmann continued to believe, another probable error.

01:00 After this, many started to work on his path, and after 22 years  they have not obtained big results.

“Big” in the sense of high power. However, most experimental work has not been aimed at high power, it is aimed at studying the conditions of the reaction and how to control it. Until the reaction is controlled, high power is dangerous and can be counterproductive. Big, though, is impressive. If one is reacting to skepticism, one may want “impressive.” Much cold fusion research was diverted and damaged by this goal, which is essentially unscientific, it is a polemic purpose requiring motivation toward some particular conclusion. This has affected some otherwise excellent scientists, and the motivation can be visible, which then feeds pseudoskeptics grist for their mill. They can smell it.

01:11 For what regard me, with a friend of the Siena University, decided to work in the same way but using Hydrogen and Nickel and obtained a number of results: production of energy by interactions between Hydrogen and Nickel.

NiH is sometimes called “Piantelli-Focardi.” From lenr-canr.org and newenergytimes.com, with some corrections:

1993 F. Piantelli, Atti Accad. Fis., Serie XV, Tomo XII, pag. 89-96 (1993)
1994 Focardi, S., R. Habel, and F. Piantelli, “Anomalous heat production in Ni-H systems.” Nuovo Cimento Soc. Ital. Fis. A, 1994. 107A: p. 163.
1996 S. Focardi, V. Gabbani, V. Montalbano, F. Piantelli, S. Veronesi, [title unknown], Atti Accad. Fisioc, Serie XV, XV 109 (1996)
1998 Focardi, S., et al., Large excess heat production in Ni-H systems. Nuovo Cimento Soc. Ital. Fis. A, 1998. 111A: p. 1233.
1999 Focardi, S., et al. On the Ni-H System. in Anomalies in Hydrogen/Deuterium Loaded Metals. 1999. Bologna.
1999 A. Battaglia, L. Daddi, S. Focardi, V. Gabbani, V. Montalbano, F. Piantelli, P. G. Sona, S. Veronesi, Nuovo Cimento A 112, 921 (1999).
2000 E. G. Campari, S. Focardi, V. Gabbani, V. Montalbano, F. Piantelli, S. Veronesi, [title unknown], ICCF8, Conference Proceedings 70, F. Scaramuzzi editor, (2000) 69E.
2002 E. G. Campari, S. Focardi, V. Gabbani, V. Montalbano, F. Piantelli, S. Veronesi, Atti [sic] TESMI Workshop, Lecce, december 6-7 2002, A. Lorusso and V. Nassisi editors, 35-42 (2004).
2004 Focardi, S., et al. Evidence of electromagnetic radiation from Ni-H Systems. in Eleventh International Conference on Condensed Matter Nuclear Science. 2004. Marseille, France.
2004 E. Campari, S. Focardi, V. Gabbani, V. Montalbano, F. Piantelli, S. Veronesi, “Overview of H-Ni Systems: Old Experiments and New Setup,” 5th Asti Workshop on Anomalies in Hydrogen- / Deuterium-Loaded Metals, Asti, Italy, (2004)
2004 Focardi, S. and Piantelli, F., “Produzione Di Energia E Reazioni Nucleari In Sistemi Ni-H A 400 C,” XIX Congresso Nazionale UIT, 2004 (PPT)
2010 Focardi, S. and A. Rossi, A new energy source from nuclear fusion. www.journal-of-nuclear-physics.com, 2010.01:30

What I immediately notice is the dramatic shift. In 2010, now with Rossi as co-author, Focardi is making a fusion claim, but has no strong fusion evidence, only anomalous heat, “too high for any chemical process.” Before that, he followed scientific prudence in his article titles, at least, only the 2004 slide presentation refers to “nuclear reactions”. I have not reviewed the articles themselves, yet.

Following this I restarted the work with the Engineer Rossi and we started to work on the same path: building system able to produce energy using hydrogen and nickel
01:54 Now, what we can see are the results of this work.
02:07 There are, this is the first picture, this is one of the first experiments done with Engineer Rossi
02:20 And you can see, at right, there is a small red bucket, containing water and some materials and left the hydrogen canister used to put hydrogen inside this capsule where we had put the nickel.
02:50 Heating together nickel and hydrogen we obtained energy and, as result the heating of the water.
02:58 The experiment is, obviously, very crude, because it was not worth, for this experiment to build more refined objects.
03:10 This is the next experiment. This time, instead of the bucket of water, there is that donut-like object to the right where some water circulated and there was the capsule containing nickel and hydrogen.
03:35 The tube you see at the lower right is to bring hydrogen, at the center there is a canister of hydrogen, and in this way we obtained a confirmation about the previous experiment with a cleaner system than the previous.
03:53 The third picture, it is another, third, method to measure. This time there is a closed circuit. You are able to see well, in the background at the right, the tube, where is inserted the cylinder, again at the right. In the tube some water was circulated. In this cylinder happen this heating process and it is a nuclear reaction between nickel and hydrogen
04:30 and what we observed experimentally was the difference of temperature between the two extremes of the cylinder
04:37 So, the three experiments confirmed that the system was really able to produce energy under the form of heat. We obtained the heating of the water.
05:00 This it was one of the latter objects built by the Engineer Rossi, that take the name of e-cat, where “cat” is a shorthand for catalyzer, that is used usually and currently, to experiment with the reaction between nickel and hydrogen and produce heat. And the heat produced is demonstrated heating water with various devices and this is one example.

None of this is going to be strongly convincing in itself, because there are many ways in which demonstrations can be faked, and some where the illusion can fool even the inventor. However, Focardi was no dummy, and it would be unexpected that major error would escape his notice. However, major fraud might. Scientists are not trained to recognize fraud, generally.

Science is heavily based on trusting experimental reports; a scientist who fakes data loses all credibility and may have demolished his or her career. Errors are made, yes, lots of them. But Focardi might not be looking thoroughly and carefully for failure modes. We saw Sven Kullander miss the obvious, that a humidity meter cannot measure steam quality, and, then, that there could be overflow water, not evaporated, under the observed conditions. We saw the “independent professors,” with the Lugano test, overlook what was clearly visible, apparent color temperature showing that their temperature calculations were far off, indicating a need for a strong calibration, which they did not do, believing a story that made no sense. Scientists, in general, are not trained to deal with skilled deception. As well, some forms of insanity are “high-functioning” and such people can be extraordinarily convincing.

It is totally understandable why anyone seeing this talk could become highly interested and even convinced that the Rossi Effect must be real. From ordinary considerations, regarding scientific testimony, the burden of evidence shifted. I still do not consider the matter closed entirely. From evidence not available in 2011, however, the burden has shifted back.

However, even then there was cause for caution. That Focardi published with Rossi in a faux journal, created and controlled by Rossi, was a red flag. That, without clear evidence, he shifted from careful scientific presentation to a dramatic claim was a red flag. His behavior with Steve Krivit was a red flag. His avoidance of true independent testing was a red flag. All of these had possible “explanations,” as long as direct evidence was missing.

05:50 Now, this is the next product built by  Engineer Rossi, again based to the same process, similar to a train wagon (NdR a shipping container) but smaller. Inside we see some boxes and everyone is a generator producing the same effects I described before.

That was the idea, yes. However, the project was crazy, part of a plan to create something dramatic. It made no real business sense. The idea would be that a megawatt plant would demonstrate reliability, and that it would be difficult to fake a megawatt. Nice big round number. but suppose COP were 6 — as actually claimed. That would then require 160 KW power input. With electrical power, ordinary service is perhaps 20 KW. I think 40 KW or so is available. The thing could not be powered to produce an actual megawatt, at that COP. So … when Rossi demonstrated this, he needed a 500 KW or so genset on site. And what power did he measure? About 500 KW. Focardi was not, in his TedX talk, claiming that the megawatt plant had actually been tested.

A sensible plan would have been to test individual reactors more thoroughly, generating reliability data. Much easier to handle, and much easier to measure the output heat, and if that measurement is done independently, which could have been arranged, even with a “black box” reactor, data actually needed to confidently design and manufacture a megawatt plant, or a plant of any capacity, would have been developed.

Something else was happening than ordinary business sense. This was all visible by the end of 2011. I do not know how much of this became known to Focardi before he died, June 22, 2013, not quite 80 years old. At that point, the Validation Test was about to be performed under Rossi supervision, by Fabio Penon. IH had, the previous year, bought that megawatt plant, apparently. (Skeptics generally assume there was only one plant. I do not know the fact.) Focardi would have been happy to see the recognition, knowing that the truth would come out. At my age (72), I find that kind of impression comforting. I don’t have to know the truth, I only need to trust it.

06:31 making work together all these elements, we would have 1 MW of power produced
06:45 This was not already started with all the generators together; it will be before the end of this month. At this time we can say there is a change in the sizes we are talking about. But every box we can see is like the old generators we used to react hydrogen and nickel to obtain heat.
07:17 This is clearly a nuclear reaction as in the experiments we did – we are doing them by two years, two years and half, I don’t remember the exact date we started. At the end of the experiment, when we analyze the materials used, the material put in the capsule, that originally was nickel and hydrogen we find again nickel but also copper.

Unfortunately, “clearly” was subjective and personal. The copper finding, he considers important evidence here, was abandoned and may have been deliberate deception, I am not documenting that here, only that this claim did not persist, and that this idea shows Focardi jumping to conclusions, losing his objectivity. To come to a scientific conclusion about this alleged transmutation, one would need many samples, and for something so remarkable, independent confirmation. Yet Forcardi talks about this being “proof.”

07:57 Now, the copper is the element following nickel on the periodic scale. It is at its side and the nucleus of copper differ from the nucleus of nickel only because it have a single proton more. Proton that was introduced, captured, by the nickel in a process of nuclear reaction. So when we affirm this is a nuclear reaction between nickel and hydrogen, this is another proof it is not a fantastic statement. We have the proofs, because as result in the end copper is formed.

That would be a great reason for dropping some copper in, wouldn’t it? Focardi befriended Rossi or did Rossi select Focardi as someone easy to fool? Once again, listening to the talk, not knowing the later fact of the claim being abandoned or acknowledged as error, this is very convincing!

08:43 Now, one of the problems when we talk about these topics is the problem of safety. And, in this case the danger for the safety is the radioactivity, because being a nuclear reaction people foresee radioactivity emitted in the reaction. This is real, but we are lucky this process produce only gamma rays and not neutrons.

Does it produce gammas? If confirmed, that would be “nuclear evidence.” It could be faked, by the way. In the original Rossi-Focardi paper, “no radiation was observed at levels greater than natural radiation background.” This is somewhat in contradiction with what Focardi claims in the talk about Bondeno; this, then, reveals a certain lack of precision and clarity. No careful testing, using control experiments, is described. He saw some elevation above background, so the claim in the paper was incomplete, at least. It looks like he never followed up. Gammas from neutron activation, if that is what was happening, have characteristic energies, which can be measured. Rossi prevented Celani, was it?, from using a portable instrument at the first 2011 test that could have measured gamma energies.

I must say I pointed to the danger of neutrons from the start with the collaboration with Rossi; and Rossi, obviously, took the measures needed because, if there would be neutrons, the things would be difficult, because neutrons can be shielded but it is not a simple problem. Luckily there are not neutrons. But there are gamma rays. The presence of gamma ray I have experienced directly, in the first experiments in the laboratory Rossi had in Bondeno, because often I did the measures when Rossi was occupied doing his bidding. I, in the first measures used an instrument detecting radioactivity and measured the gamma rays. Not very dangerous, not big compared to the normal background, but anyway present. And it is obvious there was no reason to raise the natural radioactivity level.

So from a single observation, Focardi makes a definitive claim, “there are gamma rays,” instead of merely noting that there was one measurement, with no details given, that indicated the presence of gamma radiation.

10:40 But we never detected neutrons as this was my main fear because neutron are difficult to shield. But hey never showed. The problem of the gamma rays was solved simply adding, around the generators, small sheet of lead that are able to shield the gamma ray. So we can say, there is no risk of radioactivity when we work in this way. This is good not only for us but for when there will be commercial applications.

In a more careful study, a gamma detector would be designed together with the reactor, so that it could measure the unshielded gammas. As a precaution, researchers do often have neutron detectors around, but the evidence for neutron radiation in LENR experiments, aside from muon-catalyzed fusion, a different animal that resembles hot fusion in its behavior, is that if it exists, or when it exists, it is at extremely low levels, not harmful.

Leave a Reply